Metamath Proof Explorer


Theorem nzrneg1ne0

Description: The additive inverse of the 1 in a nonzero ring is not zero ( -1 =/= 0 ). (Contributed by AV, 29-Apr-2019)

Ref Expression
Assertion nzrneg1ne0 R NzRing inv g R 1 R 0 R

Proof

Step Hyp Ref Expression
1 nzrring R NzRing R Ring
2 eqid Unit R = Unit R
3 eqid 1 R = 1 R
4 2 3 1unit R Ring 1 R Unit R
5 eqid inv g R = inv g R
6 2 5 unitnegcl R Ring 1 R Unit R inv g R 1 R Unit R
7 1 4 6 syl2anc2 R NzRing inv g R 1 R Unit R
8 eqid 0 R = 0 R
9 2 8 nzrunit R NzRing inv g R 1 R Unit R inv g R 1 R 0 R
10 7 9 mpdan R NzRing inv g R 1 R 0 R