Metamath Proof Explorer


Theorem nzrnz

Description: One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015)

Ref Expression
Hypotheses isnzr.o 1˙=1R
isnzr.z 0˙=0R
Assertion nzrnz RNzRing1˙0˙

Proof

Step Hyp Ref Expression
1 isnzr.o 1˙=1R
2 isnzr.z 0˙=0R
3 1 2 isnzr RNzRingRRing1˙0˙
4 3 simprbi RNzRing1˙0˙