Metamath Proof Explorer


Theorem o2p2e4

Description: 2 + 2 = 4 for ordinal numbers. Ordinal numbers are modeled as Von Neumann ordinals; see df-suc . For the usual proof using complex numbers, see 2p2e4 . (Contributed by NM, 18-Aug-2021) Avoid ax-rep , from a comment by Sophie. (Revised by SN, 23-Mar-2024)

Ref Expression
Assertion o2p2e4 2𝑜+𝑜2𝑜=4𝑜

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 df-1o 1𝑜=suc
3 peano1 ω
4 peano2 ωsucω
5 3 4 ax-mp sucω
6 2 5 eqeltri 1𝑜ω
7 onasuc 2𝑜On1𝑜ω2𝑜+𝑜suc1𝑜=suc2𝑜+𝑜1𝑜
8 1 6 7 mp2an 2𝑜+𝑜suc1𝑜=suc2𝑜+𝑜1𝑜
9 df-2o 2𝑜=suc1𝑜
10 9 oveq2i 2𝑜+𝑜2𝑜=2𝑜+𝑜suc1𝑜
11 df-3o 3𝑜=suc2𝑜
12 oa1suc 2𝑜On2𝑜+𝑜1𝑜=suc2𝑜
13 1 12 ax-mp 2𝑜+𝑜1𝑜=suc2𝑜
14 11 13 eqtr4i 3𝑜=2𝑜+𝑜1𝑜
15 suceq 3𝑜=2𝑜+𝑜1𝑜suc3𝑜=suc2𝑜+𝑜1𝑜
16 14 15 ax-mp suc3𝑜=suc2𝑜+𝑜1𝑜
17 8 10 16 3eqtr4i 2𝑜+𝑜2𝑜=suc3𝑜
18 df-4o 4𝑜=suc3𝑜
19 17 18 eqtr4i 2𝑜+𝑜2𝑜=4𝑜