Metamath Proof Explorer


Theorem oa1un

Description: Given A e. On , let A +o 1o be defined to be the union of A and { A } . Compare with oa1suc . (Contributed by RP, 27-Sep-2023)

Ref Expression
Assertion oa1un AOnA+𝑜1𝑜=AA

Proof

Step Hyp Ref Expression
1 oa1suc AOnA+𝑜1𝑜=sucA
2 df-suc sucA=AA
3 1 2 eqtrdi AOnA+𝑜1𝑜=AA