Metamath Proof Explorer


Theorem oaword2

Description: An ordinal is less than or equal to its sum with another. Theorem 21 of Suppes p. 209. Lemma 3.3 of Schloeder p. 7. (Contributed by NM, 7-Dec-2004)

Ref Expression
Assertion oaword2 AOnBOnAB+𝑜A

Proof

Step Hyp Ref Expression
1 0ss B
2 0elon On
3 oawordri OnBOnAOnB+𝑜AB+𝑜A
4 2 3 mp3an1 BOnAOnB+𝑜AB+𝑜A
5 oa0r AOn+𝑜A=A
6 5 adantl BOnAOn+𝑜A=A
7 6 sseq1d BOnAOn+𝑜AB+𝑜AAB+𝑜A
8 4 7 sylibd BOnAOnBAB+𝑜A
9 1 8 mpi BOnAOnAB+𝑜A
10 9 ancoms AOnBOnAB+𝑜A