Metamath Proof Explorer


Theorem ocv2ss

Description: Orthocomplements reverse subset inclusion. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypothesis ocv2ss.o ˙=ocvW
Assertion ocv2ss TS˙S˙T

Proof

Step Hyp Ref Expression
1 ocv2ss.o ˙=ocvW
2 sstr2 TSSBaseWTBaseW
3 idd TSxBaseWxBaseW
4 ssralv TSySx𝑖Wy=0ScalarWyTx𝑖Wy=0ScalarW
5 2 3 4 3anim123d TSSBaseWxBaseWySx𝑖Wy=0ScalarWTBaseWxBaseWyTx𝑖Wy=0ScalarW
6 eqid BaseW=BaseW
7 eqid 𝑖W=𝑖W
8 eqid ScalarW=ScalarW
9 eqid 0ScalarW=0ScalarW
10 6 7 8 9 1 elocv x˙SSBaseWxBaseWySx𝑖Wy=0ScalarW
11 6 7 8 9 1 elocv x˙TTBaseWxBaseWyTx𝑖Wy=0ScalarW
12 5 10 11 3imtr4g TSx˙Sx˙T
13 12 ssrdv TS˙S˙T