Metamath Proof Explorer


Theorem ocval

Description: Value of orthogonal complement of a subset of Hilbert space. (Contributed by NM, 7-Aug-2000) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion ocval HH=x|yHxihy=0

Proof

Step Hyp Ref Expression
1 ax-hilex V
2 1 elpw2 H𝒫H
3 raleq z=Hyzxihy=0yHxihy=0
4 3 rabbidv z=Hx|yzxihy=0=x|yHxihy=0
5 df-oc =z𝒫x|yzxihy=0
6 1 rabex x|yHxihy=0V
7 4 5 6 fvmpt H𝒫H=x|yHxihy=0
8 2 7 sylbir HH=x|yHxihy=0