Metamath Proof Explorer


Theorem ocvi

Description: Property of a member of the orthocomplement of a subset. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v V=BaseW
ocvfval.i ,˙=𝑖W
ocvfval.f F=ScalarW
ocvfval.z 0˙=0F
ocvfval.o ˙=ocvW
Assertion ocvi A˙SBSA,˙B=0˙

Proof

Step Hyp Ref Expression
1 ocvfval.v V=BaseW
2 ocvfval.i ,˙=𝑖W
3 ocvfval.f F=ScalarW
4 ocvfval.z 0˙=0F
5 ocvfval.o ˙=ocvW
6 1 2 3 4 5 elocv A˙SSVAVxSA,˙x=0˙
7 6 simp3bi A˙SxSA,˙x=0˙
8 oveq2 x=BA,˙x=A,˙B
9 8 eqeq1d x=BA,˙x=0˙A,˙B=0˙
10 9 rspccva xSA,˙x=0˙BSA,˙B=0˙
11 7 10 sylan A˙SBSA,˙B=0˙