Metamath Proof Explorer


Theorem ocvss

Description: The orthocomplement of a subset is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvss.v V=BaseW
ocvss.o ˙=ocvW
Assertion ocvss ˙SV

Proof

Step Hyp Ref Expression
1 ocvss.v V=BaseW
2 ocvss.o ˙=ocvW
3 eqid 𝑖W=𝑖W
4 eqid ScalarW=ScalarW
5 eqid 0ScalarW=0ScalarW
6 1 3 4 5 2 elocv x˙SSVxVySx𝑖Wy=0ScalarW
7 6 simp2bi x˙SxV
8 7 ssriv ˙SV