Metamath Proof Explorer


Theorem ocvval

Description: Value of the orthocomplement of a subset (normally a subspace) of a pre-Hilbert space. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses ocvfval.v V=BaseW
ocvfval.i ,˙=𝑖W
ocvfval.f F=ScalarW
ocvfval.z 0˙=0F
ocvfval.o ˙=ocvW
Assertion ocvval SV˙S=xV|ySx,˙y=0˙

Proof

Step Hyp Ref Expression
1 ocvfval.v V=BaseW
2 ocvfval.i ,˙=𝑖W
3 ocvfval.f F=ScalarW
4 ocvfval.z 0˙=0F
5 ocvfval.o ˙=ocvW
6 1 fvexi VV
7 6 elpw2 S𝒫VSV
8 1 2 3 4 5 ocvfval WV˙=s𝒫VxV|ysx,˙y=0˙
9 8 fveq1d WV˙S=s𝒫VxV|ysx,˙y=0˙S
10 raleq s=Sysx,˙y=0˙ySx,˙y=0˙
11 10 rabbidv s=SxV|ysx,˙y=0˙=xV|ySx,˙y=0˙
12 eqid s𝒫VxV|ysx,˙y=0˙=s𝒫VxV|ysx,˙y=0˙
13 6 rabex xV|ySx,˙y=0˙V
14 11 12 13 fvmpt S𝒫Vs𝒫VxV|ysx,˙y=0˙S=xV|ySx,˙y=0˙
15 9 14 sylan9eq WVS𝒫V˙S=xV|ySx,˙y=0˙
16 0fv S=
17 fvprc ¬WVocvW=
18 5 17 eqtrid ¬WV˙=
19 18 fveq1d ¬WV˙S=S
20 ssrab2 xV|ySx,˙y=0˙V
21 fvprc ¬WVBaseW=
22 1 21 eqtrid ¬WVV=
23 sseq0 xV|ySx,˙y=0˙VV=xV|ySx,˙y=0˙=
24 20 22 23 sylancr ¬WVxV|ySx,˙y=0˙=
25 16 19 24 3eqtr4a ¬WV˙S=xV|ySx,˙y=0˙
26 25 adantr ¬WVS𝒫V˙S=xV|ySx,˙y=0˙
27 15 26 pm2.61ian S𝒫V˙S=xV|ySx,˙y=0˙
28 7 27 sylbir SV˙S=xV|ySx,˙y=0˙