Metamath Proof Explorer


Theorem ocvz

Description: The orthocomplement of the zero subspace. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses ocvz.v V=BaseW
ocvz.o ˙=ocvW
ocvz.z 0˙=0W
Assertion ocvz WPreHil˙0˙=V

Proof

Step Hyp Ref Expression
1 ocvz.v V=BaseW
2 ocvz.o ˙=ocvW
3 ocvz.z 0˙=0W
4 phllmod WPreHilWLMod
5 eqid LSpanW=LSpanW
6 3 5 lsp0 WLModLSpanW=0˙
7 4 6 syl WPreHilLSpanW=0˙
8 7 fveq2d WPreHil˙LSpanW=˙0˙
9 0ss V
10 1 2 5 ocvlsp WPreHilV˙LSpanW=˙
11 9 10 mpan2 WPreHil˙LSpanW=˙
12 1 2 ocv0 ˙=V
13 11 12 eqtrdi WPreHil˙LSpanW=V
14 8 13 eqtr3d WPreHil˙0˙=V