Metamath Proof Explorer


Theorem oddm1evenALTV

Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion oddm1evenALTV N N Odd N 1 Even

Proof

Step Hyp Ref Expression
1 isodd2 N Odd N N 1 2
2 1 baib N N Odd N 1 2
3 peano2zm N N 1
4 3 biantrurd N N 1 2 N 1 N 1 2
5 2 4 bitrd N N Odd N 1 N 1 2
6 iseven N 1 Even N 1 N 1 2
7 5 6 bitr4di N N Odd N 1 Even