Metamath Proof Explorer


Theorem oddm1evenALTV

Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016) (Revised by AV, 19-Jun-2020)

Ref Expression
Assertion oddm1evenALTV NNOddN1Even

Proof

Step Hyp Ref Expression
1 isodd2 NOddNN12
2 1 baib NNOddN12
3 peano2zm NN1
4 3 biantrurd NN12N1N12
5 2 4 bitrd NNOddN1N12
6 iseven N1EvenN1N12
7 5 6 bitr4di NNOddN1Even