Metamath Proof Explorer


Theorem odrngle

Description: The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis odrngstr.w W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
Assertion odrngle ˙V˙=W

Proof

Step Hyp Ref Expression
1 odrngstr.w W=BasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
2 1 odrngstr WStruct112
3 pleid le=Slotndx
4 snsstp2 ndx˙TopSetndxJndx˙distndxD
5 ssun2 TopSetndxJndx˙distndxDBasendxB+ndx+˙ndx·˙TopSetndxJndx˙distndxD
6 5 1 sseqtrri TopSetndxJndx˙distndxDW
7 4 6 sstri ndx˙W
8 2 3 7 strfv ˙V˙=W