Metamath Proof Explorer


Theorem oe0m

Description: Value of zero raised to an ordinal. (Contributed by NM, 31-Dec-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion oe0m AOn𝑜A=1𝑜A

Proof

Step Hyp Ref Expression
1 0elon On
2 oev OnAOn𝑜A=if=1𝑜ArecxVx𝑜1𝑜A
3 1 2 mpan AOn𝑜A=if=1𝑜ArecxVx𝑜1𝑜A
4 eqid =
5 4 iftruei if=1𝑜ArecxVx𝑜1𝑜A=1𝑜A
6 3 5 eqtrdi AOn𝑜A=1𝑜A