Metamath Proof Explorer


Theorem ogrpaddltrd

Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpaddlt.0 B = Base G
ogrpaddlt.1 < ˙ = < G
ogrpaddlt.2 + ˙ = + G
ogrpaddltrd.1 φ G V
ogrpaddltrd.2 φ opp 𝑔 G oGrp
ogrpaddltrd.3 φ X B
ogrpaddltrd.4 φ Y B
ogrpaddltrd.5 φ Z B
ogrpaddltrd.6 φ X < ˙ Y
Assertion ogrpaddltrd φ Z + ˙ X < ˙ Z + ˙ Y

Proof

Step Hyp Ref Expression
1 ogrpaddlt.0 B = Base G
2 ogrpaddlt.1 < ˙ = < G
3 ogrpaddlt.2 + ˙ = + G
4 ogrpaddltrd.1 φ G V
5 ogrpaddltrd.2 φ opp 𝑔 G oGrp
6 ogrpaddltrd.3 φ X B
7 ogrpaddltrd.4 φ Y B
8 ogrpaddltrd.5 φ Z B
9 ogrpaddltrd.6 φ X < ˙ Y
10 eqid opp 𝑔 G = opp 𝑔 G
11 10 2 oppglt G V < ˙ = < opp 𝑔 G
12 4 11 syl φ < ˙ = < opp 𝑔 G
13 12 breqd φ X < ˙ Y X < opp 𝑔 G Y
14 9 13 mpbid φ X < opp 𝑔 G Y
15 10 1 oppgbas B = Base opp 𝑔 G
16 eqid < opp 𝑔 G = < opp 𝑔 G
17 eqid + opp 𝑔 G = + opp 𝑔 G
18 15 16 17 ogrpaddlt opp 𝑔 G oGrp X B Y B Z B X < opp 𝑔 G Y X + opp 𝑔 G Z < opp 𝑔 G Y + opp 𝑔 G Z
19 5 6 7 8 14 18 syl131anc φ X + opp 𝑔 G Z < opp 𝑔 G Y + opp 𝑔 G Z
20 3 10 17 oppgplus X + opp 𝑔 G Z = Z + ˙ X
21 3 10 17 oppgplus Y + opp 𝑔 G Z = Z + ˙ Y
22 19 20 21 3brtr3g φ Z + ˙ X < opp 𝑔 G Z + ˙ Y
23 12 breqd φ Z + ˙ X < ˙ Z + ˙ Y Z + ˙ X < opp 𝑔 G Z + ˙ Y
24 22 23 mpbird φ Z + ˙ X < ˙ Z + ˙ Y