Metamath Proof Explorer


Theorem ogrpaddltrd

Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)

Ref Expression
Hypotheses ogrpaddlt.0 B=BaseG
ogrpaddlt.1 <˙=<G
ogrpaddlt.2 +˙=+G
ogrpaddltrd.1 φGV
ogrpaddltrd.2 φopp𝑔GoGrp
ogrpaddltrd.3 φXB
ogrpaddltrd.4 φYB
ogrpaddltrd.5 φZB
ogrpaddltrd.6 φX<˙Y
Assertion ogrpaddltrd φZ+˙X<˙Z+˙Y

Proof

Step Hyp Ref Expression
1 ogrpaddlt.0 B=BaseG
2 ogrpaddlt.1 <˙=<G
3 ogrpaddlt.2 +˙=+G
4 ogrpaddltrd.1 φGV
5 ogrpaddltrd.2 φopp𝑔GoGrp
6 ogrpaddltrd.3 φXB
7 ogrpaddltrd.4 φYB
8 ogrpaddltrd.5 φZB
9 ogrpaddltrd.6 φX<˙Y
10 eqid opp𝑔G=opp𝑔G
11 10 2 oppglt GV<˙=<opp𝑔G
12 4 11 syl φ<˙=<opp𝑔G
13 12 breqd φX<˙YX<opp𝑔GY
14 9 13 mpbid φX<opp𝑔GY
15 10 1 oppgbas B=Baseopp𝑔G
16 eqid <opp𝑔G=<opp𝑔G
17 eqid +opp𝑔G=+opp𝑔G
18 15 16 17 ogrpaddlt opp𝑔GoGrpXBYBZBX<opp𝑔GYX+opp𝑔GZ<opp𝑔GY+opp𝑔GZ
19 5 6 7 8 14 18 syl131anc φX+opp𝑔GZ<opp𝑔GY+opp𝑔GZ
20 3 10 17 oppgplus X+opp𝑔GZ=Z+˙X
21 3 10 17 oppgplus Y+opp𝑔GZ=Z+˙Y
22 19 20 21 3brtr3g φZ+˙X<opp𝑔GZ+˙Y
23 12 breqd φZ+˙X<˙Z+˙YZ+˙X<opp𝑔GZ+˙Y
24 22 23 mpbird φZ+˙X<˙Z+˙Y