Description: In a right ordered group, strict ordering is compatible with group addition. (Contributed by Thierry Arnoux, 3-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ogrpaddlt.0 | |
|
ogrpaddlt.1 | |
||
ogrpaddlt.2 | |
||
ogrpaddltrd.1 | |
||
ogrpaddltrd.2 | |
||
ogrpaddltrd.3 | |
||
ogrpaddltrd.4 | |
||
ogrpaddltrd.5 | |
||
ogrpaddltrd.6 | |
||
Assertion | ogrpaddltrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ogrpaddlt.0 | |
|
2 | ogrpaddlt.1 | |
|
3 | ogrpaddlt.2 | |
|
4 | ogrpaddltrd.1 | |
|
5 | ogrpaddltrd.2 | |
|
6 | ogrpaddltrd.3 | |
|
7 | ogrpaddltrd.4 | |
|
8 | ogrpaddltrd.5 | |
|
9 | ogrpaddltrd.6 | |
|
10 | eqid | |
|
11 | 10 2 | oppglt | |
12 | 4 11 | syl | |
13 | 12 | breqd | |
14 | 9 13 | mpbid | |
15 | 10 1 | oppgbas | |
16 | eqid | |
|
17 | eqid | |
|
18 | 15 16 17 | ogrpaddlt | |
19 | 5 6 7 8 14 18 | syl131anc | |
20 | 3 10 17 | oppgplus | |
21 | 3 10 17 | oppgplus | |
22 | 19 20 21 | 3brtr3g | |
23 | 12 | breqd | |
24 | 22 23 | mpbird | |