Metamath Proof Explorer


Theorem om0

Description: Ordinal multiplication with zero. Definition 8.15(a) of TakeutiZaring p. 62. Definition 2.5 of Schloeder p. 4. See om0x for a way to remove the antecedent A e. On . (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion om0 AOnA𝑜=

Proof

Step Hyp Ref Expression
1 0elon On
2 omv AOnOnA𝑜=recxVx+𝑜A
3 1 2 mpan2 AOnA𝑜=recxVx+𝑜A
4 0ex V
5 4 rdg0 recxVx+𝑜A=
6 3 5 eqtrdi AOnA𝑜=