Metamath Proof Explorer


Theorem om1

Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. Lemma 2.15 of Schloeder p. 5. (Contributed by NM, 29-Oct-1995)

Ref Expression
Assertion om1 AOnA𝑜1𝑜=A

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 1 oveq2i A𝑜1𝑜=A𝑜suc
3 peano1 ω
4 onmsuc AOnωA𝑜suc=A𝑜+𝑜A
5 3 4 mpan2 AOnA𝑜suc=A𝑜+𝑜A
6 2 5 eqtrid AOnA𝑜1𝑜=A𝑜+𝑜A
7 om0 AOnA𝑜=
8 7 oveq1d AOnA𝑜+𝑜A=+𝑜A
9 oa0r AOn+𝑜A=A
10 6 8 9 3eqtrd AOnA𝑜1𝑜=A