Metamath Proof Explorer


Theorem om1r

Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. Lemma 2.15 of Schloeder p. 5. (Contributed by NM, 3-Aug-2004)

Ref Expression
Assertion om1r AOn1𝑜𝑜A=A

Proof

Step Hyp Ref Expression
1 oveq2 x=1𝑜𝑜x=1𝑜𝑜
2 id x=x=
3 1 2 eqeq12d x=1𝑜𝑜x=x1𝑜𝑜=
4 oveq2 x=y1𝑜𝑜x=1𝑜𝑜y
5 id x=yx=y
6 4 5 eqeq12d x=y1𝑜𝑜x=x1𝑜𝑜y=y
7 oveq2 x=sucy1𝑜𝑜x=1𝑜𝑜sucy
8 id x=sucyx=sucy
9 7 8 eqeq12d x=sucy1𝑜𝑜x=x1𝑜𝑜sucy=sucy
10 oveq2 x=A1𝑜𝑜x=1𝑜𝑜A
11 id x=Ax=A
12 10 11 eqeq12d x=A1𝑜𝑜x=x1𝑜𝑜A=A
13 1on 1𝑜On
14 om0 1𝑜On1𝑜𝑜=
15 13 14 ax-mp 1𝑜𝑜=
16 omsuc 1𝑜OnyOn1𝑜𝑜sucy=1𝑜𝑜y+𝑜1𝑜
17 13 16 mpan yOn1𝑜𝑜sucy=1𝑜𝑜y+𝑜1𝑜
18 oveq1 1𝑜𝑜y=y1𝑜𝑜y+𝑜1𝑜=y+𝑜1𝑜
19 17 18 sylan9eq yOn1𝑜𝑜y=y1𝑜𝑜sucy=y+𝑜1𝑜
20 oa1suc yOny+𝑜1𝑜=sucy
21 20 adantr yOn1𝑜𝑜y=yy+𝑜1𝑜=sucy
22 19 21 eqtrd yOn1𝑜𝑜y=y1𝑜𝑜sucy=sucy
23 22 ex yOn1𝑜𝑜y=y1𝑜𝑜sucy=sucy
24 iuneq2 yx1𝑜𝑜y=yyx1𝑜𝑜y=yxy
25 uniiun x=yxy
26 24 25 eqtr4di yx1𝑜𝑜y=yyx1𝑜𝑜y=x
27 vex xV
28 omlim 1𝑜OnxVLimx1𝑜𝑜x=yx1𝑜𝑜y
29 13 28 mpan xVLimx1𝑜𝑜x=yx1𝑜𝑜y
30 27 29 mpan Limx1𝑜𝑜x=yx1𝑜𝑜y
31 limuni Limxx=x
32 30 31 eqeq12d Limx1𝑜𝑜x=xyx1𝑜𝑜y=x
33 26 32 imbitrrid Limxyx1𝑜𝑜y=y1𝑜𝑜x=x
34 3 6 9 12 15 23 33 tfinds AOn1𝑜𝑜A=A