Description: Ordinal multiplication with 1. Proposition 8.18(2) of TakeutiZaring p. 63. Lemma 2.15 of Schloeder p. 5. (Contributed by NM, 3-Aug-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | om1r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 | |
|
2 | id | |
|
3 | 1 2 | eqeq12d | |
4 | oveq2 | |
|
5 | id | |
|
6 | 4 5 | eqeq12d | |
7 | oveq2 | |
|
8 | id | |
|
9 | 7 8 | eqeq12d | |
10 | oveq2 | |
|
11 | id | |
|
12 | 10 11 | eqeq12d | |
13 | 1on | |
|
14 | om0 | |
|
15 | 13 14 | ax-mp | |
16 | omsuc | |
|
17 | 13 16 | mpan | |
18 | oveq1 | |
|
19 | 17 18 | sylan9eq | |
20 | oa1suc | |
|
21 | 20 | adantr | |
22 | 19 21 | eqtrd | |
23 | 22 | ex | |
24 | iuneq2 | |
|
25 | uniiun | |
|
26 | 24 25 | eqtr4di | |
27 | vex | |
|
28 | omlim | |
|
29 | 13 28 | mpan | |
30 | 27 29 | mpan | |
31 | limuni | |
|
32 | 30 31 | eqeq12d | |
33 | 26 32 | imbitrrid | |
34 | 3 6 9 12 15 23 33 | tfinds | |