Metamath Proof Explorer


Theorem om1om1r

Description: Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of Schloeder p. 5. See om1 and om1r for individual statements. (Contributed by RP, 29-Jan-2025)

Ref Expression
Assertion om1om1r AOn1𝑜𝑜A=A𝑜1𝑜A𝑜1𝑜=A

Proof

Step Hyp Ref Expression
1 om1r AOn1𝑜𝑜A=A
2 om1 AOnA𝑜1𝑜=A
3 1 2 eqtr4d AOn1𝑜𝑜A=A𝑜1𝑜
4 3 2 jca AOn1𝑜𝑜A=A𝑜1𝑜A𝑜1𝑜=A