Metamath Proof Explorer


Theorem ominf4

Description: _om is Dedekind infinite. (Contributed by Stefan O'Rear, 30-Oct-2014) (Proof shortened by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion ominf4 ¬ωFinIV

Proof

Step Hyp Ref Expression
1 id ωFinIVωFinIV
2 peano1 ω
3 difsnpss ωωω
4 2 3 mpbi ωω
5 limom Limω
6 5 limenpsi ωFinIVωω
7 6 ensymd ωFinIVωω
8 fin4i ωωωω¬ωFinIV
9 4 7 8 sylancr ωFinIV¬ωFinIV
10 1 9 pm2.65i ¬ωFinIV