Metamath Proof Explorer


Theorem onfrALTVD

Description: Virtual deduction proof of onfrALT . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT is onfrALTVD without virtual deductions and was automatically derived from onfrALTVD .

1:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
2:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
3:1: |- (. ( a C_ On /\ a =/= (/) ) ,. x e. a ->. ( -. ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) ).
4:2: |- (. ( a C_ On /\ a =/= (/) ) ,. x e. a ->. ( ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) ).
5:: |- ( ( a i^i x ) = (/) \/ -. ( a i^i x ) = (/) )
6:5,4,3: |- (. ( a C_ On /\ a =/= (/) ) ,. x e. a ->. E. y e. a ( a i^i y ) = (/) ).
7:6: |- (. ( a C_ On /\ a =/= (/) ) ->. ( x e. a -> E. y e. a ( a i^i y ) = (/) ) ).
8:7: |- (. ( a C_ On /\ a =/= (/) ) ->. A. x ( x e. a -> E. y e. a ( a i^i y ) = (/) ) ).
9:8: |- (. ( a C_ On /\ a =/= (/) ) ->. ( E. x x e. a -> E. y e. a ( a i^i y ) = (/) ) ).
10:: |- ( a =/= (/) <-> E. x x e. a )
11:9,10: |- (. ( a C_ On /\ a =/= (/) ) ->. ( a =/= (/) -> E. y e. a ( a i^i y ) = (/) ) ).
12:: |- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ).
13:12: |- (. ( a C_ On /\ a =/= (/) ) ->. a =/= (/) ).
14:13,11: |- (. ( a C_ On /\ a =/= (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
15:14: |- ( ( a C_ On /\ a =/= (/) ) -> E. y e. a ( a i^i y ) = (/) )
16:15: |- A. a ( ( a C_ On /\ a =/= (/) ) -> E. y e. a ( a i^i y ) = (/) )
qed:16: |- _E Fr On
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTVD EFrOn

Proof

Step Hyp Ref Expression
1 idn1 aOnaaOna
2 simpr aOnaa
3 1 2 e1a aOnaa
4 exmid ax=¬ax=
5 onfrALTlem1VD aOna,xaax=yaay=
6 5 in2an aOna,xaax=yaay=
7 onfrALTlem2VD aOna,xa¬ax=yaay=
8 7 in2an aOna,xa¬ax=yaay=
9 pm2.61 ax=yaay=¬ax=yaay=yaay=
10 9 a1i ax=¬ax=ax=yaay=¬ax=yaay=yaay=
11 4 6 8 10 e022 aOna,xayaay=
12 11 in2 aOnaxayaay=
13 12 gen11 aOnaxxayaay=
14 19.23v xxayaay=xxayaay=
15 14 biimpi xxayaay=xxayaay=
16 13 15 e1a aOnaxxayaay=
17 n0 axxa
18 imbi1 axxaayaay=xxayaay=
19 18 biimprcd xxayaay=axxaayaay=
20 16 17 19 e10 aOnaayaay=
21 pm2.27 aayaay=yaay=
22 3 20 21 e11 aOnayaay=
23 22 in1 aOnayaay=
24 23 ax-gen aaOnayaay=
25 dfepfr EFrOnaaOnayaay=
26 25 biimpri aaOnayaay=EFrOn
27 24 26 e0a EFrOn