1:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a
/\ -. ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
|
2:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a
/\ ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
|
3:1: | |- (. ( a C_ On /\ a =/= (/) ) ,. x e. a ->.
( -. ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) ).
|
4:2: | |- (. ( a C_ On /\ a =/= (/) ) ,. x e. a ->.
( ( a i^i x ) = (/) -> E. y e. a ( a i^i y ) = (/) ) ).
|
5:: | |- ( ( a i^i x ) = (/) \/ -. ( a i^i x ) =
(/) )
|
6:5,4,3: | |- (. ( a C_ On /\ a =/= (/) ) ,. x e. a ->.
E. y e. a ( a i^i y ) = (/) ).
|
7:6: | |- (. ( a C_ On /\ a =/= (/) ) ->. ( x e. a
-> E. y e. a ( a i^i y ) = (/) ) ).
|
8:7: | |- (. ( a C_ On /\ a =/= (/) ) ->. A. x ( x
e. a -> E. y e. a ( a i^i y ) = (/) ) ).
|
9:8: | |- (. ( a C_ On /\ a =/= (/) ) ->. ( E. x x
e. a -> E. y e. a ( a i^i y ) = (/) ) ).
|
10:: | |- ( a =/= (/) <-> E. x x e. a )
|
11:9,10: | |- (. ( a C_ On /\ a =/= (/) ) ->. ( a =/=
(/) -> E. y e. a ( a i^i y ) = (/) ) ).
|
12:: | |- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_
On /\ a =/= (/) ) ).
|
13:12: | |- (. ( a C_ On /\ a =/= (/) ) ->. a =/=
(/) ).
|
14:13,11: | |- (. ( a C_ On /\ a =/= (/) ) ->. E. y e.
a ( a i^i y ) = (/) ).
|
15:14: | |- ( ( a C_ On /\ a =/= (/) ) -> E. y e. a
( a i^i y ) = (/) )
|
16:15: | |- A. a ( ( a C_ On /\ a =/= (/) ) -> E. y
e. a ( a i^i y ) = (/) )
|
qed:16: | |- _E Fr On
|