Metamath Proof Explorer


Theorem onfrALTlem2VD

Description: Virtual deduction proof of onfrALTlem2 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 is onfrALTlem2VD without virtual deductions and was automatically derived from onfrALTlem2VD .

1:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ).
2:1: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i y ) ).
3:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. a ).
4:: |- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ).
5:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ).
6:5: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. a ).
7:4: |- (. ( a C_ On /\ a =/= (/) ) ->. a C_ On ).
8:6,7: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. On ).
9:8: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Ord x ).
10:9: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Tr x ).
11:1: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. ( a i^i x ) ).
12:11: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. y e. x ).
13:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. y ).
14:10,12,13: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. x ).
15:3,14: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( a i^i x ) ).
16:13,15: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) /\ z e. ( a i^i y ) ) ->. z e. ( ( a i^i x ) i^i y ) ).
17:16: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ).
18:17: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. A. z ( z e. ( a i^i y ) -> z e. ( ( a i^i x ) i^i y ) ) ).
19:18: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( a i^i y ) C_ ( ( a i^i x ) i^i y ) ).
20:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ).
21:20: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( ( a i^i x ) i^i y ) = (/) ).
22:19,21: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( a i^i y ) = (/) ).
23:20: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. y e. ( a i^i x ) ).
24:23: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. y e. a ).
25:22,24: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) , ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ->. ( y e. a /\ ( a i^i y ) = (/) ) ).
26:25: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ).
27:26: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. A. y ( ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> ( y e. a /\ ( a i^i y ) = (/) ) ) ).
28:27: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) -> E. y ( y e. a /\ ( a i^i y ) = (/) ) ) ).
29:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ).
30:29: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ).
31:28,30: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y ( y e. a /\ ( a i^i y ) = (/) ) ).
qed:31: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. a ( a i^i y ) = (/) ).
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem2VD a On a , x a ¬ a x = y a a y =

Proof

Step Hyp Ref Expression
1 idn3 a On a , x a ¬ a x = , y a x a x y = z a y y a x a x y = z a y
2 simpr y a x a x y = z a y z a y
3 1 2 e3 a On a , x a ¬ a x = , y a x a x y = z a y z a y
4 inss2 a y y
5 4 sseli z a y z y
6 3 5 e3 a On a , x a ¬ a x = , y a x a x y = z a y z y
7 inss1 a y a
8 7 sseli z a y z a
9 3 8 e3 a On a , x a ¬ a x = , y a x a x y = z a y z a
10 idn2 a On a , x a ¬ a x = x a ¬ a x =
11 simpl x a ¬ a x = x a
12 10 11 e2 a On a , x a ¬ a x = x a
13 idn1 a On a a On a
14 simpl a On a a On
15 13 14 e1a a On a a On
16 ssel a On x a x On
17 16 com12 x a a On x On
18 12 15 17 e21 a On a , x a ¬ a x = x On
19 eloni x On Ord x
20 18 19 e2 a On a , x a ¬ a x = Ord x
21 ordtr Ord x Tr x
22 20 21 e2 a On a , x a ¬ a x = Tr x
23 simpll y a x a x y = z a y y a x
24 1 23 e3 a On a , x a ¬ a x = , y a x a x y = z a y y a x
25 inss2 a x x
26 25 sseli y a x y x
27 24 26 e3 a On a , x a ¬ a x = , y a x a x y = z a y y x
28 trel Tr x z y y x z x
29 28 expcomd Tr x y x z y z x
30 22 27 6 29 e233 a On a , x a ¬ a x = , y a x a x y = z a y z x
31 elin z a x z a z x
32 31 simplbi2 z a z x z a x
33 9 30 32 e33 a On a , x a ¬ a x = , y a x a x y = z a y z a x
34 elin z a x y z a x z y
35 34 simplbi2com z y z a x z a x y
36 6 33 35 e33 a On a , x a ¬ a x = , y a x a x y = z a y z a x y
37 36 in3an a On a , x a ¬ a x = , y a x a x y = z a y z a x y
38 37 gen31 a On a , x a ¬ a x = , y a x a x y = z z a y z a x y
39 dfss2 a y a x y z z a y z a x y
40 39 biimpri z z a y z a x y a y a x y
41 38 40 e3 a On a , x a ¬ a x = , y a x a x y = a y a x y
42 idn3 a On a , x a ¬ a x = , y a x a x y = y a x a x y =
43 simpr y a x a x y = a x y =
44 42 43 e3 a On a , x a ¬ a x = , y a x a x y = a x y =
45 sseq0 a y a x y a x y = a y =
46 45 ex a y a x y a x y = a y =
47 41 44 46 e33 a On a , x a ¬ a x = , y a x a x y = a y =
48 simpl y a x a x y = y a x
49 42 48 e3 a On a , x a ¬ a x = , y a x a x y = y a x
50 inss1 a x a
51 50 sseli y a x y a
52 49 51 e3 a On a , x a ¬ a x = , y a x a x y = y a
53 pm3.21 a y = y a y a a y =
54 47 52 53 e33 a On a , x a ¬ a x = , y a x a x y = y a a y =
55 54 in3 a On a , x a ¬ a x = y a x a x y = y a a y =
56 55 gen21 a On a , x a ¬ a x = y y a x a x y = y a a y =
57 exim y y a x a x y = y a a y = y y a x a x y = y y a a y =
58 56 57 e2 a On a , x a ¬ a x = y y a x a x y = y y a a y =
59 onfrALTlem3VD a On a , x a ¬ a x = y a x a x y =
60 df-rex y a x a x y = y y a x a x y =
61 60 biimpi y a x a x y = y y a x a x y =
62 59 61 e2 a On a , x a ¬ a x = y y a x a x y =
63 id y y a x a x y = y y a a y = y y a x a x y = y y a a y =
64 58 62 63 e22 a On a , x a ¬ a x = y y a a y =
65 df-rex y a a y = y y a a y =
66 65 biimpri y y a a y = y a a y =
67 64 66 e2 a On a , x a ¬ a x = y a a y =