1:: | |- (. ( a C_ On /\ a =/= (/) ) ->. ( a
C_ On /\ a =/= (/) ) ).
|
2:: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ).
|
3:2: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. x e. a ).
|
4:1: | |- (. ( a C_ On /\ a =/= (/) ) ->. a C_
On ).
|
5:3,4: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. x e. On ).
|
6:5: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. Ord x ).
|
7:6: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->.E We x ).
|
8:: | |- ( a i^i x ) C x
|
9:7,8: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->.E We ( a i^i x ) ).
|
10:9: | |- (. ( a C On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->.E Fr ( a i^i x ) ).
|
11:10: | |- (. ( a C On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. A. b ( ( b C_ ( a i^i x ) /\ b =/=
(/) ) -> E. y e. b ( b i^i y ) = (/) ) ).
|
12:: | |- x e.V
|
13:12,8: | |- ( a i^i x ) e. V
|
14:13,11: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. [. ( a i^i x ) / b ]. ( ( b C_ ( a
i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ).
|
15:: | |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a
i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a
i^i
x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) (
( a i^i x ) i^i y ) = (/) ) )
|
16:14,15: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( ( ( a i^i x ) C_ ( a i^i x ) /\ (
a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) =
(/) ) ).
|
17:: | |- ( a i^i x ) C_ ( a i^i x )
|
18:2: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. -. ( a i^i x ) = (/) ).
|
19:18: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( a i^i x ) =/= (/) ).
|
20:17,19: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. ( ( a i^i x ) C_ ( a i^i x ) /\ ( a
i^i
x ) =/= (/) ) ).
|
qed:16,20: | |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e.
a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i
y
) = (/) ).
|