Metamath Proof Explorer


Theorem onfrALTlem3VD

Description: Virtual deduction proof of onfrALTlem3 . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 is onfrALTlem3VD without virtual deductions and was automatically derived from onfrALTlem3VD .

1:: |- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ).
2:: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ).
3:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. a ).
4:1: |- (. ( a C_ On /\ a =/= (/) ) ->. a C_ On ).
5:3,4: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. On ).
6:5: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Ord x ).
7:6: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->.E We x ).
8:: |- ( a i^i x ) C x
9:7,8: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->.E We ( a i^i x ) ).
10:9: |- (. ( a C On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->.E Fr ( a i^i x ) ).
11:10: |- (. ( a C On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ).
12:: |- x e.V
13:12,8: |- ( a i^i x ) e. V
14:13,11: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ).
15:: |- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) )
16:14,15: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ).
17:: |- ( a i^i x ) C_ ( a i^i x )
18:2: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. -. ( a i^i x ) = (/) ).
19:18: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( a i^i x ) =/= (/) ).
20:17,19: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ).
qed:16,20: |- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ).
(Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem3VD aOna,xa¬ax=yaxaxy=

Proof

Step Hyp Ref Expression
1 vex xV
2 inss2 axx
3 1 2 ssexi axV
4 idn2 aOna,xa¬ax=xa¬ax=
5 simpl xa¬ax=xa
6 4 5 e2 aOna,xa¬ax=xa
7 idn1 aOnaaOna
8 simpl aOnaaOn
9 7 8 e1a aOnaaOn
10 ssel aOnxaxOn
11 10 com12 xaaOnxOn
12 6 9 11 e21 aOna,xa¬ax=xOn
13 eloni xOnOrdx
14 12 13 e2 aOna,xa¬ax=Ordx
15 ordwe OrdxEWex
16 14 15 e2 aOna,xa¬ax=EWex
17 wess axxEWexEWeax
18 17 com12 EWexaxxEWeax
19 16 2 18 e20 aOna,xa¬ax=EWeax
20 wefr EWeaxEFrax
21 19 20 e2 aOna,xa¬ax=EFrax
22 dfepfr EFraxbbaxbybby=
23 22 biimpi EFraxbbaxbybby=
24 21 23 e2 aOna,xa¬ax=bbaxbybby=
25 spsbc axVbbaxbybby=[˙ax/b]˙baxbybby=
26 3 24 25 e02 aOna,xa¬ax=[˙ax/b]˙baxbybby=
27 onfrALTlem5 [˙ax/b]˙baxbybby=axaxaxyaxaxy=
28 26 27 e2bi aOna,xa¬ax=axaxaxyaxaxy=
29 ssid axax
30 simpr xa¬ax=¬ax=
31 4 30 e2 aOna,xa¬ax=¬ax=
32 df-ne ax¬ax=
33 32 biimpri ¬ax=ax
34 31 33 e2 aOna,xa¬ax=ax
35 pm3.2 axaxaxaxaxax
36 29 34 35 e02 aOna,xa¬ax=axaxax
37 id axaxaxyaxaxy=axaxaxyaxaxy=
38 28 36 37 e22 aOna,xa¬ax=yaxaxy=