Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- x e. _V |
2 |
|
inss2 |
|- ( a i^i x ) C_ x |
3 |
1 2
|
ssexi |
|- ( a i^i x ) e. _V |
4 |
|
idn2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( x e. a /\ -. ( a i^i x ) = (/) ) ). |
5 |
|
simpl |
|- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> x e. a ) |
6 |
4 5
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. a ). |
7 |
|
idn1 |
|- (. ( a C_ On /\ a =/= (/) ) ->. ( a C_ On /\ a =/= (/) ) ). |
8 |
|
simpl |
|- ( ( a C_ On /\ a =/= (/) ) -> a C_ On ) |
9 |
7 8
|
e1a |
|- (. ( a C_ On /\ a =/= (/) ) ->. a C_ On ). |
10 |
|
ssel |
|- ( a C_ On -> ( x e. a -> x e. On ) ) |
11 |
10
|
com12 |
|- ( x e. a -> ( a C_ On -> x e. On ) ) |
12 |
6 9 11
|
e21 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. x e. On ). |
13 |
|
eloni |
|- ( x e. On -> Ord x ) |
14 |
12 13
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. Ord x ). |
15 |
|
ordwe |
|- ( Ord x -> _E We x ) |
16 |
14 15
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. _E We x ). |
17 |
|
wess |
|- ( ( a i^i x ) C_ x -> ( _E We x -> _E We ( a i^i x ) ) ) |
18 |
17
|
com12 |
|- ( _E We x -> ( ( a i^i x ) C_ x -> _E We ( a i^i x ) ) ) |
19 |
16 2 18
|
e20 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. _E We ( a i^i x ) ). |
20 |
|
wefr |
|- ( _E We ( a i^i x ) -> _E Fr ( a i^i x ) ) |
21 |
19 20
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. _E Fr ( a i^i x ) ). |
22 |
|
dfepfr |
|- ( _E Fr ( a i^i x ) <-> A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) |
23 |
22
|
biimpi |
|- ( _E Fr ( a i^i x ) -> A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) |
24 |
21 23
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ). |
25 |
|
spsbc |
|- ( ( a i^i x ) e. _V -> ( A. b ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) -> [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ) ) |
26 |
3 24 25
|
e02 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) ). |
27 |
|
onfrALTlem5 |
|- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
28 |
26 27
|
e2bi |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ). |
29 |
|
ssid |
|- ( a i^i x ) C_ ( a i^i x ) |
30 |
|
simpr |
|- ( ( x e. a /\ -. ( a i^i x ) = (/) ) -> -. ( a i^i x ) = (/) ) |
31 |
4 30
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. -. ( a i^i x ) = (/) ). |
32 |
|
df-ne |
|- ( ( a i^i x ) =/= (/) <-> -. ( a i^i x ) = (/) ) |
33 |
32
|
biimpri |
|- ( -. ( a i^i x ) = (/) -> ( a i^i x ) =/= (/) ) |
34 |
31 33
|
e2 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( a i^i x ) =/= (/) ). |
35 |
|
pm3.2 |
|- ( ( a i^i x ) C_ ( a i^i x ) -> ( ( a i^i x ) =/= (/) -> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) ) |
36 |
29 34 35
|
e02 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ). |
37 |
|
id |
|- ( ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) -> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
38 |
28 36 37
|
e22 |
|- (. ( a C_ On /\ a =/= (/) ) ,. ( x e. a /\ -. ( a i^i x ) = (/) ) ->. E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ). |