| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- a e. _V |
| 2 |
1
|
inex1 |
|- ( a i^i x ) e. _V |
| 3 |
|
sbcimg |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) ) |
| 4 |
2 3
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) ) |
| 5 |
|
sbcan |
|- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) ) |
| 6 |
|
sseq1 |
|- ( b = ( a i^i x ) -> ( b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) ) |
| 7 |
2 6
|
sbcie |
|- ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) <-> ( a i^i x ) C_ ( a i^i x ) ) |
| 8 |
|
df-ne |
|- ( b =/= (/) <-> -. b = (/) ) |
| 9 |
8
|
sbcbii |
|- ( [. ( a i^i x ) / b ]. b =/= (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
| 10 |
|
sbcng |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. -. b = (/) <-> -. [. ( a i^i x ) / b ]. b = (/) ) ) |
| 11 |
10
|
bicomd |
|- ( ( a i^i x ) e. _V -> ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) ) |
| 12 |
2 11
|
ax-mp |
|- ( -. [. ( a i^i x ) / b ]. b = (/) <-> [. ( a i^i x ) / b ]. -. b = (/) ) |
| 13 |
|
eqsbc1 |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) ) |
| 14 |
2 13
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) = (/) ) |
| 15 |
14
|
necon3bbii |
|- ( -. [. ( a i^i x ) / b ]. b = (/) <-> ( a i^i x ) =/= (/) ) |
| 16 |
9 12 15
|
3bitr2i |
|- ( [. ( a i^i x ) / b ]. b =/= (/) <-> ( a i^i x ) =/= (/) ) |
| 17 |
7 16
|
anbi12i |
|- ( ( [. ( a i^i x ) / b ]. b C_ ( a i^i x ) /\ [. ( a i^i x ) / b ]. b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
| 18 |
5 17
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) <-> ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) ) |
| 19 |
|
df-rex |
|- ( E. y e. b ( b i^i y ) = (/) <-> E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
| 20 |
19
|
sbcbii |
|- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) ) |
| 21 |
|
sbcan |
|- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) ) |
| 22 |
|
sbcel2gv |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) ) |
| 23 |
2 22
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. y e. b <-> y e. ( a i^i x ) ) |
| 24 |
|
sbceqg |
|- ( ( a i^i x ) e. _V -> ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) ) |
| 25 |
2 24
|
ax-mp |
|- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) ) |
| 26 |
|
csbin |
|- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) |
| 27 |
|
csbvarg |
|- ( ( a i^i x ) e. _V -> [_ ( a i^i x ) / b ]_ b = ( a i^i x ) ) |
| 28 |
2 27
|
ax-mp |
|- [_ ( a i^i x ) / b ]_ b = ( a i^i x ) |
| 29 |
|
csbconstg |
|- ( ( a i^i x ) e. _V -> [_ ( a i^i x ) / b ]_ y = y ) |
| 30 |
2 29
|
ax-mp |
|- [_ ( a i^i x ) / b ]_ y = y |
| 31 |
28 30
|
ineq12i |
|- ( [_ ( a i^i x ) / b ]_ b i^i [_ ( a i^i x ) / b ]_ y ) = ( ( a i^i x ) i^i y ) |
| 32 |
26 31
|
eqtri |
|- [_ ( a i^i x ) / b ]_ ( b i^i y ) = ( ( a i^i x ) i^i y ) |
| 33 |
|
csb0 |
|- [_ ( a i^i x ) / b ]_ (/) = (/) |
| 34 |
32 33
|
eqeq12i |
|- ( [_ ( a i^i x ) / b ]_ ( b i^i y ) = [_ ( a i^i x ) / b ]_ (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
| 35 |
25 34
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( b i^i y ) = (/) <-> ( ( a i^i x ) i^i y ) = (/) ) |
| 36 |
23 35
|
anbi12i |
|- ( ( [. ( a i^i x ) / b ]. y e. b /\ [. ( a i^i x ) / b ]. ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
| 37 |
21 36
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
| 38 |
37
|
exbii |
|- ( E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
| 39 |
|
sbcex2 |
|- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y [. ( a i^i x ) / b ]. ( y e. b /\ ( b i^i y ) = (/) ) ) |
| 40 |
|
df-rex |
|- ( E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) <-> E. y ( y e. ( a i^i x ) /\ ( ( a i^i x ) i^i y ) = (/) ) ) |
| 41 |
38 39 40
|
3bitr4i |
|- ( [. ( a i^i x ) / b ]. E. y ( y e. b /\ ( b i^i y ) = (/) ) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
| 42 |
20 41
|
bitri |
|- ( [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) <-> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) |
| 43 |
18 42
|
imbi12i |
|- ( ( [. ( a i^i x ) / b ]. ( b C_ ( a i^i x ) /\ b =/= (/) ) -> [. ( a i^i x ) / b ]. E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |
| 44 |
4 43
|
bitri |
|- ( [. ( a i^i x ) / b ]. ( ( b C_ ( a i^i x ) /\ b =/= (/) ) -> E. y e. b ( b i^i y ) = (/) ) <-> ( ( ( a i^i x ) C_ ( a i^i x ) /\ ( a i^i x ) =/= (/) ) -> E. y e. ( a i^i x ) ( ( a i^i x ) i^i y ) = (/) ) ) |