| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcan |
|- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( [. y / x ]. x e. a /\ [. y / x ]. ( a i^i x ) = (/) ) ) |
| 2 |
|
sbcel1v |
|- ( [. y / x ]. x e. a <-> y e. a ) |
| 3 |
|
vex |
|- y e. _V |
| 4 |
|
sbceqg |
|- ( y e. _V -> ( [. y / x ]. ( a i^i x ) = (/) <-> [_ y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) ) ) |
| 5 |
3 4
|
ax-mp |
|- ( [. y / x ]. ( a i^i x ) = (/) <-> [_ y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) ) |
| 6 |
|
csbin |
|- [_ y / x ]_ ( a i^i x ) = ( [_ y / x ]_ a i^i [_ y / x ]_ x ) |
| 7 |
|
csbconstg |
|- ( y e. _V -> [_ y / x ]_ a = a ) |
| 8 |
3 7
|
ax-mp |
|- [_ y / x ]_ a = a |
| 9 |
|
csbvarg |
|- ( y e. _V -> [_ y / x ]_ x = y ) |
| 10 |
3 9
|
ax-mp |
|- [_ y / x ]_ x = y |
| 11 |
8 10
|
ineq12i |
|- ( [_ y / x ]_ a i^i [_ y / x ]_ x ) = ( a i^i y ) |
| 12 |
6 11
|
eqtri |
|- [_ y / x ]_ ( a i^i x ) = ( a i^i y ) |
| 13 |
|
csb0 |
|- [_ y / x ]_ (/) = (/) |
| 14 |
12 13
|
eqeq12i |
|- ( [_ y / x ]_ ( a i^i x ) = [_ y / x ]_ (/) <-> ( a i^i y ) = (/) ) |
| 15 |
5 14
|
bitri |
|- ( [. y / x ]. ( a i^i x ) = (/) <-> ( a i^i y ) = (/) ) |
| 16 |
2 15
|
anbi12i |
|- ( ( [. y / x ]. x e. a /\ [. y / x ]. ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |
| 17 |
1 16
|
bitri |
|- ( [. y / x ]. ( x e. a /\ ( a i^i x ) = (/) ) <-> ( y e. a /\ ( a i^i y ) = (/) ) ) |