| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcan |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑎 ∧ [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 2 |
|
sbcel1v |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎 ) |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
|
sbceqg |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ↔ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ⦋ 𝑦 / 𝑥 ⦌ ∅ ) ) |
| 5 |
3 4
|
ax-mp |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ↔ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ⦋ 𝑦 / 𝑥 ⦌ ∅ ) |
| 6 |
|
csbin |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝑎 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 ) |
| 7 |
|
csbconstg |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑎 = 𝑎 ) |
| 8 |
3 7
|
ax-mp |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑎 = 𝑎 |
| 9 |
|
csbvarg |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 ) |
| 10 |
3 9
|
ax-mp |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 |
| 11 |
8 10
|
ineq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ 𝑎 ∩ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 ) = ( 𝑎 ∩ 𝑦 ) |
| 12 |
6 11
|
eqtri |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ( 𝑎 ∩ 𝑦 ) |
| 13 |
|
csb0 |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ∅ = ∅ |
| 14 |
12 13
|
eqeq12i |
⊢ ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝑎 ∩ 𝑥 ) = ⦋ 𝑦 / 𝑥 ⦌ ∅ ↔ ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 15 |
5 14
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ↔ ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 16 |
2 15
|
anbi12i |
⊢ ( ( [ 𝑦 / 𝑥 ] 𝑥 ∈ 𝑎 ∧ [ 𝑦 / 𝑥 ] ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 17 |
1 16
|
bitri |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑥 ) = ∅ ) ↔ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |