Metamath Proof Explorer


Theorem onfrALTlem2

Description: Lemma for onfrALT . (Contributed by Alan Sare, 22-Jul-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion onfrALTlem2 aOnaxa¬ax=yaay=

Proof

Step Hyp Ref Expression
1 simpr yaxaxy=zayzay
2 1 2a1i aOnaxa¬ax=yaxaxy=zayzay
3 inss2 ayy
4 3 sseli zayzy
5 2 4 syl8 aOnaxa¬ax=yaxaxy=zayzy
6 inss1 aya
7 6 sseli zayza
8 2 7 syl8 aOnaxa¬ax=yaxaxy=zayza
9 simpl aOnaaOn
10 simpl xa¬ax=xa
11 ssel aOnxaxOn
12 9 10 11 syl2im aOnaxa¬ax=xOn
13 eloni xOnOrdx
14 12 13 syl6 aOnaxa¬ax=Ordx
15 ordtr OrdxTrx
16 14 15 syl6 aOnaxa¬ax=Trx
17 simpll yaxaxy=zayyax
18 17 2a1i aOnaxa¬ax=yaxaxy=zayyax
19 inss2 axx
20 19 sseli yaxyx
21 18 20 syl8 aOnaxa¬ax=yaxaxy=zayyx
22 trel Trxzyyxzx
23 22 expcomd Trxyxzyzx
24 16 21 5 23 ee233 aOnaxa¬ax=yaxaxy=zayzx
25 elin zaxzazx
26 25 simplbi2 zazxzax
27 8 24 26 ee33 aOnaxa¬ax=yaxaxy=zayzax
28 elin zaxyzaxzy
29 28 simplbi2com zyzaxzaxy
30 5 27 29 ee33 aOnaxa¬ax=yaxaxy=zayzaxy
31 30 exp4a aOnaxa¬ax=yaxaxy=zayzaxy
32 31 ggen31 aOnaxa¬ax=yaxaxy=zzayzaxy
33 dfss2 ayaxyzzayzaxy
34 33 biimpri zzayzaxyayaxy
35 32 34 syl8 aOnaxa¬ax=yaxaxy=ayaxy
36 simpr yaxaxy=axy=
37 36 2a1i aOnaxa¬ax=yaxaxy=axy=
38 sseq0 ayaxyaxy=ay=
39 38 ex ayaxyaxy=ay=
40 35 37 39 ee33 aOnaxa¬ax=yaxaxy=ay=
41 simpl yaxaxy=yax
42 41 2a1i aOnaxa¬ax=yaxaxy=yax
43 inss1 axa
44 43 sseli yaxya
45 42 44 syl8 aOnaxa¬ax=yaxaxy=ya
46 pm3.21 ay=yayaay=
47 40 45 46 ee33 aOnaxa¬ax=yaxaxy=yaay=
48 47 alrimdv aOnaxa¬ax=yyaxaxy=yaay=
49 onfrALTlem3 aOnaxa¬ax=yaxaxy=
50 df-rex yaxaxy=yyaxaxy=
51 49 50 imbitrdi aOnaxa¬ax=yyaxaxy=
52 exim yyaxaxy=yaay=yyaxaxy=yyaay=
53 48 51 52 syl6c aOnaxa¬ax=yyaay=
54 df-rex yaay=yyaay=
55 53 54 syl6ibr aOnaxa¬ax=yaay=