| Step |
Hyp |
Ref |
Expression |
| 1 |
|
idn3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ) |
| 2 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) |
| 3 |
1 2
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) |
| 4 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝑦 ) ⊆ 𝑦 |
| 5 |
4
|
sseli |
⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ 𝑦 ) |
| 6 |
3 5
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑧 ∈ 𝑦 ) |
| 7 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑦 ) ⊆ 𝑎 |
| 8 |
7
|
sseli |
⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ 𝑎 ) |
| 9 |
3 8
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑧 ∈ 𝑎 ) |
| 10 |
|
idn2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) → 𝑥 ∈ 𝑎 ) |
| 12 |
10 11
|
e2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ 𝑥 ∈ 𝑎 ) |
| 13 |
|
idn1 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) → 𝑎 ⊆ On ) |
| 15 |
13 14
|
e1a |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) ▶ 𝑎 ⊆ On ) |
| 16 |
|
ssel |
⊢ ( 𝑎 ⊆ On → ( 𝑥 ∈ 𝑎 → 𝑥 ∈ On ) ) |
| 17 |
16
|
com12 |
⊢ ( 𝑥 ∈ 𝑎 → ( 𝑎 ⊆ On → 𝑥 ∈ On ) ) |
| 18 |
12 15 17
|
e21 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ 𝑥 ∈ On ) |
| 19 |
|
eloni |
⊢ ( 𝑥 ∈ On → Ord 𝑥 ) |
| 20 |
18 19
|
e2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ Ord 𝑥 ) |
| 21 |
|
ordtr |
⊢ ( Ord 𝑥 → Tr 𝑥 ) |
| 22 |
20 21
|
e2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ Tr 𝑥 ) |
| 23 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
| 24 |
1 23
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
| 25 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑥 |
| 26 |
25
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑦 ∈ 𝑥 ) |
| 27 |
24 26
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑦 ∈ 𝑥 ) |
| 28 |
|
trel |
⊢ ( Tr 𝑥 → ( ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥 ) → 𝑧 ∈ 𝑥 ) ) |
| 29 |
28
|
expcomd |
⊢ ( Tr 𝑥 → ( 𝑦 ∈ 𝑥 → ( 𝑧 ∈ 𝑦 → 𝑧 ∈ 𝑥 ) ) ) |
| 30 |
22 27 6 29
|
e233 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑧 ∈ 𝑥 ) |
| 31 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ↔ ( 𝑧 ∈ 𝑎 ∧ 𝑧 ∈ 𝑥 ) ) |
| 32 |
31
|
simplbi2 |
⊢ ( 𝑧 ∈ 𝑎 → ( 𝑧 ∈ 𝑥 → 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ) ) |
| 33 |
9 30 32
|
e33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ) |
| 34 |
|
elin |
⊢ ( 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) ∧ 𝑧 ∈ 𝑦 ) ) |
| 35 |
34
|
simplbi2com |
⊢ ( 𝑧 ∈ 𝑦 → ( 𝑧 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
| 36 |
6 33 35
|
e33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ∧ 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) ) ▶ 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) |
| 37 |
36
|
in3an |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
| 38 |
37
|
gen31 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
| 39 |
|
df-ss |
⊢ ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) ) |
| 40 |
39
|
biimpri |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ ( 𝑎 ∩ 𝑦 ) → 𝑧 ∈ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) → ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) |
| 41 |
38 40
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ) |
| 42 |
|
idn3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
| 43 |
|
simpr |
⊢ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
| 44 |
42 43
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
| 45 |
|
sseq0 |
⊢ ( ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 46 |
45
|
ex |
⊢ ( ( 𝑎 ∩ 𝑦 ) ⊆ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) → ( ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ → ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 47 |
41 44 46
|
e33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 48 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
| 49 |
42 48
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ) |
| 50 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝑥 ) ⊆ 𝑎 |
| 51 |
50
|
sseli |
⊢ ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) → 𝑦 ∈ 𝑎 ) |
| 52 |
49 51
|
e3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ 𝑦 ∈ 𝑎 ) |
| 53 |
|
pm3.21 |
⊢ ( ( 𝑎 ∩ 𝑦 ) = ∅ → ( 𝑦 ∈ 𝑎 → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 54 |
47 52 53
|
e33 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) , ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ▶ ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 55 |
54
|
in3 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 56 |
55
|
gen21 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 57 |
|
exim |
⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) → ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 58 |
56 57
|
e2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 59 |
|
onfrALTlem3VD |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) |
| 60 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
| 61 |
60
|
biimpi |
⊢ ( ∃ 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ → ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
| 62 |
59 61
|
e2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) ) |
| 63 |
|
id |
⊢ ( ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) → ( ∃ 𝑦 ( 𝑦 ∈ ( 𝑎 ∩ 𝑥 ) ∧ ( ( 𝑎 ∩ 𝑥 ) ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) ) |
| 64 |
58 62 63
|
e22 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 65 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) ) |
| 66 |
65
|
biimpri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑎 ∧ ( 𝑎 ∩ 𝑦 ) = ∅ ) → ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |
| 67 |
64 66
|
e2 |
⊢ ( ( 𝑎 ⊆ On ∧ 𝑎 ≠ ∅ ) , ( 𝑥 ∈ 𝑎 ∧ ¬ ( 𝑎 ∩ 𝑥 ) = ∅ ) ▶ ∃ 𝑦 ∈ 𝑎 ( 𝑎 ∩ 𝑦 ) = ∅ ) |