Metamath Proof Explorer


Theorem oninton

Description: The intersection of a nonempty collection of ordinal numbers is an ordinal number. Compare Exercise 6 of TakeutiZaring p. 44. (Contributed by NM, 29-Jan-1997)

Ref Expression
Assertion oninton AOnAAOn

Proof

Step Hyp Ref Expression
1 onint AOnAAA
2 1 ex AOnAAA
3 ssel AOnAAAOn
4 2 3 syld AOnAAOn
5 4 imp AOnAAOn