Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Chen-Pang He
Ordinal topology
ontopbas
Next ⟩
onsstopbas
Metamath Proof Explorer
Ascii
Unicode
Theorem
ontopbas
Description:
An ordinal number is a topological basis.
(Contributed by
Chen-Pang He
, 8-Oct-2015)
Ref
Expression
Assertion
ontopbas
⊢
B
∈
On
→
B
∈
TopBases
Proof
Step
Hyp
Ref
Expression
1
onelon
⊢
B
∈
On
∧
x
∈
B
→
x
∈
On
2
onelon
⊢
B
∈
On
∧
y
∈
B
→
y
∈
On
3
1
2
anim12dan
⊢
B
∈
On
∧
x
∈
B
∧
y
∈
B
→
x
∈
On
∧
y
∈
On
4
3
ex
⊢
B
∈
On
→
x
∈
B
∧
y
∈
B
→
x
∈
On
∧
y
∈
On
5
onin
⊢
x
∈
On
∧
y
∈
On
→
x
∩
y
∈
On
6
4
5
syl6
⊢
B
∈
On
→
x
∈
B
∧
y
∈
B
→
x
∩
y
∈
On
7
6
anc2ri
⊢
B
∈
On
→
x
∈
B
∧
y
∈
B
→
x
∩
y
∈
On
∧
B
∈
On
8
inss1
⊢
x
∩
y
⊆
x
9
8
jctl
⊢
x
∈
B
→
x
∩
y
⊆
x
∧
x
∈
B
10
9
adantr
⊢
x
∈
B
∧
y
∈
B
→
x
∩
y
⊆
x
∧
x
∈
B
11
10
a1i
⊢
B
∈
On
→
x
∈
B
∧
y
∈
B
→
x
∩
y
⊆
x
∧
x
∈
B
12
ontr2
⊢
x
∩
y
∈
On
∧
B
∈
On
→
x
∩
y
⊆
x
∧
x
∈
B
→
x
∩
y
∈
B
13
7
11
12
syl6c
⊢
B
∈
On
→
x
∈
B
∧
y
∈
B
→
x
∩
y
∈
B
14
13
ralrimivv
⊢
B
∈
On
→
∀
x
∈
B
∀
y
∈
B
x
∩
y
∈
B
15
fiinbas
⊢
B
∈
On
∧
∀
x
∈
B
∀
y
∈
B
x
∩
y
∈
B
→
B
∈
TopBases
16
14
15
mpdan
⊢
B
∈
On
→
B
∈
TopBases