Metamath Proof Explorer


Theorem op01dm

Description: Conditions necessary for zero and unity elements to exist. (Contributed by NM, 14-Sep-2018)

Ref Expression
Hypotheses op01dm.b B=BaseK
op01dm.u U=lubK
op01dm.g G=glbK
Assertion op01dm KOPBdomUBdomG

Proof

Step Hyp Ref Expression
1 op01dm.b B=BaseK
2 op01dm.u U=lubK
3 op01dm.g G=glbK
4 eqid K=K
5 eqid ocK=ocK
6 eqid joinK=joinK
7 eqid meetK=meetK
8 eqid 0.K=0.K
9 eqid 1.K=1.K
10 1 2 3 4 5 6 7 8 9 isopos KOPKPosetBdomUBdomGxByBocKxBocKocKx=xxKyocKyKocKxxjoinKocKx=1.KxmeetKocKx=0.K
11 simpl BdomUBdomGxByBocKxBocKocKx=xxKyocKyKocKxxjoinKocKx=1.KxmeetKocKx=0.KBdomUBdomG
12 11 3adantl1 KPosetBdomUBdomGxByBocKxBocKocKx=xxKyocKyKocKxxjoinKocKx=1.KxmeetKocKx=0.KBdomUBdomG
13 10 12 sylbi KOPBdomUBdomG