Metamath Proof Explorer


Theorem opabn0

Description: Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007)

Ref Expression
Assertion opabn0 xy|φxyφ

Proof

Step Hyp Ref Expression
1 n0 xy|φzzxy|φ
2 elopab zxy|φxyz=xyφ
3 2 exbii zzxy|φzxyz=xyφ
4 exrot3 zxyz=xyφxyzz=xyφ
5 opex xyV
6 5 isseti zz=xy
7 19.41v zz=xyφzz=xyφ
8 6 7 mpbiran zz=xyφφ
9 8 2exbii xyzz=xyφxyφ
10 4 9 bitri zxyz=xyφxyφ
11 3 10 bitri zzxy|φxyφ
12 1 11 bitri xy|φxyφ