Metamath Proof Explorer


Theorem opabresex0d

Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses opabresex0d.x φ x R y x C
opabresex0d.t φ x R y θ
opabresex0d.y φ x C y | θ V
opabresex0d.c φ C W
Assertion opabresex0d φ x y | x R y ψ V

Proof

Step Hyp Ref Expression
1 opabresex0d.x φ x R y x C
2 opabresex0d.t φ x R y θ
3 opabresex0d.y φ x C y | θ V
4 opabresex0d.c φ C W
5 1 2 jca φ x R y x C θ
6 5 ex φ x R y x C θ
7 6 alrimivv φ x y x R y x C θ
8 3 elexd φ x C y | θ V
9 4 8 opabex3d φ x y | x C θ V
10 opabbrex x y x R y x C θ x y | x C θ V x y | x R y ψ V
11 7 9 10 syl2anc φ x y | x R y ψ V