Metamath Proof Explorer


Theorem opabresex0d

Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses opabresex0d.x
|- ( ( ph /\ x R y ) -> x e. C )
opabresex0d.t
|- ( ( ph /\ x R y ) -> th )
opabresex0d.y
|- ( ( ph /\ x e. C ) -> { y | th } e. V )
opabresex0d.c
|- ( ph -> C e. W )
Assertion opabresex0d
|- ( ph -> { <. x , y >. | ( x R y /\ ps ) } e. _V )

Proof

Step Hyp Ref Expression
1 opabresex0d.x
 |-  ( ( ph /\ x R y ) -> x e. C )
2 opabresex0d.t
 |-  ( ( ph /\ x R y ) -> th )
3 opabresex0d.y
 |-  ( ( ph /\ x e. C ) -> { y | th } e. V )
4 opabresex0d.c
 |-  ( ph -> C e. W )
5 1 2 jca
 |-  ( ( ph /\ x R y ) -> ( x e. C /\ th ) )
6 5 ex
 |-  ( ph -> ( x R y -> ( x e. C /\ th ) ) )
7 6 alrimivv
 |-  ( ph -> A. x A. y ( x R y -> ( x e. C /\ th ) ) )
8 3 elexd
 |-  ( ( ph /\ x e. C ) -> { y | th } e. _V )
9 4 8 opabex3d
 |-  ( ph -> { <. x , y >. | ( x e. C /\ th ) } e. _V )
10 opabbrex
 |-  ( ( A. x A. y ( x R y -> ( x e. C /\ th ) ) /\ { <. x , y >. | ( x e. C /\ th ) } e. _V ) -> { <. x , y >. | ( x R y /\ ps ) } e. _V )
11 7 9 10 syl2anc
 |-  ( ph -> { <. x , y >. | ( x R y /\ ps ) } e. _V )