Step |
Hyp |
Ref |
Expression |
1 |
|
opabresex0d.x |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) |
2 |
|
opabresex0d.t |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝜃 ) |
3 |
|
opabresex0d.y |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 𝑦 ∣ 𝜃 } ∈ 𝑉 ) |
4 |
|
opabresex0d.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
5 |
1 2
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → ( 𝑥 ∈ 𝐶 ∧ 𝜃 ) ) |
6 |
5
|
ex |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝜃 ) ) ) |
7 |
6
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝜃 ) ) ) |
8 |
3
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 𝑦 ∣ 𝜃 } ∈ V ) |
9 |
4 8
|
opabex3d |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜃 ) } ∈ V ) |
10 |
|
opabbrex |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝐶 ∧ 𝜃 ) ) ∧ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐶 ∧ 𝜃 ) } ∈ V ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ∈ V ) |
11 |
7 9 10
|
syl2anc |
⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ∈ V ) |