Metamath Proof Explorer


Theorem opabresex0d

Description: A collection of ordered pairs, the class of all possible second components being a set, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 1-Jan-2021)

Ref Expression
Hypotheses opabresex0d.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
opabresex0d.t ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝜃 )
opabresex0d.y ( ( 𝜑𝑥𝐶 ) → { 𝑦𝜃 } ∈ 𝑉 )
opabresex0d.c ( 𝜑𝐶𝑊 )
Assertion opabresex0d ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )

Proof

Step Hyp Ref Expression
1 opabresex0d.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
2 opabresex0d.t ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝜃 )
3 opabresex0d.y ( ( 𝜑𝑥𝐶 ) → { 𝑦𝜃 } ∈ 𝑉 )
4 opabresex0d.c ( 𝜑𝐶𝑊 )
5 1 2 jca ( ( 𝜑𝑥 𝑅 𝑦 ) → ( 𝑥𝐶𝜃 ) )
6 5 ex ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥𝐶𝜃 ) ) )
7 6 alrimivv ( 𝜑 → ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦 → ( 𝑥𝐶𝜃 ) ) )
8 3 elexd ( ( 𝜑𝑥𝐶 ) → { 𝑦𝜃 } ∈ V )
9 4 8 opabex3d ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝜃 ) } ∈ V )
10 opabbrex ( ( ∀ 𝑥𝑦 ( 𝑥 𝑅 𝑦 → ( 𝑥𝐶𝜃 ) ) ∧ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐶𝜃 ) } ∈ V ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )
11 7 9 10 syl2anc ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )