Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opabresex0d.x | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) | |
opabresex0d.t | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝜃 ) | ||
opabresex0d.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 𝑦 ∣ 𝜃 } ∈ 𝑉 ) | ||
opabresex0d.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
Assertion | opabbrfex0d | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresex0d.x | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) | |
2 | opabresex0d.t | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝜃 ) | |
3 | opabresex0d.y | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 𝑦 ∣ 𝜃 } ∈ 𝑉 ) | |
4 | opabresex0d.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
5 | pm4.24 | ⊢ ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦 ) ) | |
6 | 5 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦 ) } |
7 | 1 2 3 4 | opabresex0d | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦 ) } ∈ V ) |
8 | 6 7 | eqeltrid | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ∈ V ) |