Metamath Proof Explorer


Theorem opabbrfex0d

Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresex0d.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
opabresex0d.t ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝜃 )
opabresex0d.y ( ( 𝜑𝑥𝐶 ) → { 𝑦𝜃 } ∈ 𝑉 )
opabresex0d.c ( 𝜑𝐶𝑊 )
Assertion opabbrfex0d ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ∈ V )

Proof

Step Hyp Ref Expression
1 opabresex0d.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
2 opabresex0d.t ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝜃 )
3 opabresex0d.y ( ( 𝜑𝑥𝐶 ) → { 𝑦𝜃 } ∈ 𝑉 )
4 opabresex0d.c ( 𝜑𝐶𝑊 )
5 pm4.24 ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) )
6 5 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) }
7 1 2 3 4 opabresex0d ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) } ∈ V )
8 6 7 eqeltrid ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ∈ V )