Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opabresex0d.x | |- ( ( ph /\ x R y ) -> x e. C ) |
|
opabresex0d.t | |- ( ( ph /\ x R y ) -> th ) |
||
opabresex0d.y | |- ( ( ph /\ x e. C ) -> { y | th } e. V ) |
||
opabresex0d.c | |- ( ph -> C e. W ) |
||
Assertion | opabbrfex0d | |- ( ph -> { <. x , y >. | x R y } e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresex0d.x | |- ( ( ph /\ x R y ) -> x e. C ) |
|
2 | opabresex0d.t | |- ( ( ph /\ x R y ) -> th ) |
|
3 | opabresex0d.y | |- ( ( ph /\ x e. C ) -> { y | th } e. V ) |
|
4 | opabresex0d.c | |- ( ph -> C e. W ) |
|
5 | pm4.24 | |- ( x R y <-> ( x R y /\ x R y ) ) |
|
6 | 5 | opabbii | |- { <. x , y >. | x R y } = { <. x , y >. | ( x R y /\ x R y ) } |
7 | 1 2 3 4 | opabresex0d | |- ( ph -> { <. x , y >. | ( x R y /\ x R y ) } e. _V ) |
8 | 6 7 | eqeltrid | |- ( ph -> { <. x , y >. | x R y } e. _V ) |