Metamath Proof Explorer


Theorem opabbrfex0d

Description: A collection of ordered pairs, the class of all possible second components being a set, is a set. (Contributed by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresex0d.x
|- ( ( ph /\ x R y ) -> x e. C )
opabresex0d.t
|- ( ( ph /\ x R y ) -> th )
opabresex0d.y
|- ( ( ph /\ x e. C ) -> { y | th } e. V )
opabresex0d.c
|- ( ph -> C e. W )
Assertion opabbrfex0d
|- ( ph -> { <. x , y >. | x R y } e. _V )

Proof

Step Hyp Ref Expression
1 opabresex0d.x
 |-  ( ( ph /\ x R y ) -> x e. C )
2 opabresex0d.t
 |-  ( ( ph /\ x R y ) -> th )
3 opabresex0d.y
 |-  ( ( ph /\ x e. C ) -> { y | th } e. V )
4 opabresex0d.c
 |-  ( ph -> C e. W )
5 pm4.24
 |-  ( x R y <-> ( x R y /\ x R y ) )
6 5 opabbii
 |-  { <. x , y >. | x R y } = { <. x , y >. | ( x R y /\ x R y ) }
7 1 2 3 4 opabresex0d
 |-  ( ph -> { <. x , y >. | ( x R y /\ x R y ) } e. _V )
8 6 7 eqeltrid
 |-  ( ph -> { <. x , y >. | x R y } e. _V )