Metamath Proof Explorer


Theorem opabresexd

Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresexd.x
|- ( ( ph /\ x R y ) -> x e. C )
opabresexd.y
|- ( ( ph /\ x R y ) -> y : A --> B )
opabresexd.a
|- ( ( ph /\ x e. C ) -> A e. U )
opabresexd.b
|- ( ( ph /\ x e. C ) -> B e. V )
opabresexd.c
|- ( ph -> C e. W )
Assertion opabresexd
|- ( ph -> { <. x , y >. | ( x R y /\ ps ) } e. _V )

Proof

Step Hyp Ref Expression
1 opabresexd.x
 |-  ( ( ph /\ x R y ) -> x e. C )
2 opabresexd.y
 |-  ( ( ph /\ x R y ) -> y : A --> B )
3 opabresexd.a
 |-  ( ( ph /\ x e. C ) -> A e. U )
4 opabresexd.b
 |-  ( ( ph /\ x e. C ) -> B e. V )
5 opabresexd.c
 |-  ( ph -> C e. W )
6 mapex
 |-  ( ( A e. U /\ B e. V ) -> { y | y : A --> B } e. _V )
7 3 4 6 syl2anc
 |-  ( ( ph /\ x e. C ) -> { y | y : A --> B } e. _V )
8 1 2 7 5 opabresex0d
 |-  ( ph -> { <. x , y >. | ( x R y /\ ps ) } e. _V )