Metamath Proof Explorer


Theorem opabresexd

Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresexd.x φ x R y x C
opabresexd.y φ x R y y : A B
opabresexd.a φ x C A U
opabresexd.b φ x C B V
opabresexd.c φ C W
Assertion opabresexd φ x y | x R y ψ V

Proof

Step Hyp Ref Expression
1 opabresexd.x φ x R y x C
2 opabresexd.y φ x R y y : A B
3 opabresexd.a φ x C A U
4 opabresexd.b φ x C B V
5 opabresexd.c φ C W
6 mapex A U B V y | y : A B V
7 3 4 6 syl2anc φ x C y | y : A B V
8 1 2 7 5 opabresex0d φ x y | x R y ψ V