Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabresexd.x | ||
| opabresexd.y | |||
| opabresexd.a | |||
| opabresexd.b | |||
| opabresexd.c | |||
| Assertion | opabresexd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresexd.x | ||
| 2 | opabresexd.y | ||
| 3 | opabresexd.a | ||
| 4 | opabresexd.b | ||
| 5 | opabresexd.c | ||
| 6 | mapex | ||
| 7 | 3 4 6 | syl2anc | |
| 8 | 1 2 7 5 | opabresex0d |