Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opabresexd.x | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) | |
opabresexd.y | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) | ||
opabresexd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ∈ 𝑈 ) | ||
opabresexd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝑉 ) | ||
opabresexd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
Assertion | opabresexd | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opabresexd.x | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) | |
2 | opabresexd.y | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) | |
3 | opabresexd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ∈ 𝑈 ) | |
4 | opabresexd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝑉 ) | |
5 | opabresexd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
6 | mapex | ⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ) → { 𝑦 ∣ 𝑦 : 𝐴 ⟶ 𝐵 } ∈ V ) | |
7 | 3 4 6 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → { 𝑦 ∣ 𝑦 : 𝐴 ⟶ 𝐵 } ∈ V ) |
8 | 1 2 7 5 | opabresex0d | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝜓 ) } ∈ V ) |