Metamath Proof Explorer


Theorem opabresexd

Description: A collection of ordered pairs, the second component being a function, with a restriction of a binary relation is a set. (Contributed by Alexander van der Vekens, 1-Nov-2017) (Revised by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresexd.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
opabresexd.y ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴𝐵 )
opabresexd.a ( ( 𝜑𝑥𝐶 ) → 𝐴𝑈 )
opabresexd.b ( ( 𝜑𝑥𝐶 ) → 𝐵𝑉 )
opabresexd.c ( 𝜑𝐶𝑊 )
Assertion opabresexd ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )

Proof

Step Hyp Ref Expression
1 opabresexd.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
2 opabresexd.y ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴𝐵 )
3 opabresexd.a ( ( 𝜑𝑥𝐶 ) → 𝐴𝑈 )
4 opabresexd.b ( ( 𝜑𝑥𝐶 ) → 𝐵𝑉 )
5 opabresexd.c ( 𝜑𝐶𝑊 )
6 mapex ( ( 𝐴𝑈𝐵𝑉 ) → { 𝑦𝑦 : 𝐴𝐵 } ∈ V )
7 3 4 6 syl2anc ( ( 𝜑𝑥𝐶 ) → { 𝑦𝑦 : 𝐴𝐵 } ∈ V )
8 1 2 7 5 opabresex0d ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝜓 ) } ∈ V )