Description: A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opabresexd.x | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) | |
| opabresexd.y | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) | ||
| opabresexd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ∈ 𝑈 ) | ||
| opabresexd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝑉 ) | ||
| opabresexd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | ||
| Assertion | opabbrfexd | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opabresexd.x | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝐶 ) | |
| 2 | opabresexd.y | ⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴 ⟶ 𝐵 ) | |
| 3 | opabresexd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ∈ 𝑈 ) | |
| 4 | opabresexd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝑉 ) | |
| 5 | opabresexd.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) | |
| 6 | pm4.24 | ⊢ ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦 ) ) | |
| 7 | 6 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦 ) } |
| 8 | 1 2 3 4 5 | opabresexd | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 𝑅 𝑦 ∧ 𝑥 𝑅 𝑦 ) } ∈ V ) |
| 9 | 7 8 | eqeltrid | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ 𝑥 𝑅 𝑦 } ∈ V ) |