Metamath Proof Explorer


Theorem opabbrfexd

Description: A collection of ordered pairs, the second component being a function, is a set. (Contributed by AV, 15-Jan-2021)

Ref Expression
Hypotheses opabresexd.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
opabresexd.y ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴𝐵 )
opabresexd.a ( ( 𝜑𝑥𝐶 ) → 𝐴𝑈 )
opabresexd.b ( ( 𝜑𝑥𝐶 ) → 𝐵𝑉 )
opabresexd.c ( 𝜑𝐶𝑊 )
Assertion opabbrfexd ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ∈ V )

Proof

Step Hyp Ref Expression
1 opabresexd.x ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑥𝐶 )
2 opabresexd.y ( ( 𝜑𝑥 𝑅 𝑦 ) → 𝑦 : 𝐴𝐵 )
3 opabresexd.a ( ( 𝜑𝑥𝐶 ) → 𝐴𝑈 )
4 opabresexd.b ( ( 𝜑𝑥𝐶 ) → 𝐵𝑉 )
5 opabresexd.c ( 𝜑𝐶𝑊 )
6 pm4.24 ( 𝑥 𝑅 𝑦 ↔ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) )
7 6 opabbii { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) }
8 1 2 3 4 5 opabresexd ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥 𝑅 𝑦𝑥 𝑅 𝑦 ) } ∈ V )
9 7 8 eqeltrid ( 𝜑 → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝑥 𝑅 𝑦 } ∈ V )