Step |
Hyp |
Ref |
Expression |
1 |
|
f1oresf1orab.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
2 |
|
f1oresf1orab.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
3 |
|
f1oresf1orab.3 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
4 |
|
f1oresf1orab.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) → ( 𝜒 ↔ 𝑥 ∈ 𝐷 ) ) |
5 |
1 2 4
|
f1oresrab |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } ) : { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
6 |
|
dfss7 |
⊢ ( 𝐷 ⊆ 𝐴 ↔ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } = 𝐷 ) |
7 |
3 6
|
sylib |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } = 𝐷 ) |
8 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐷 = { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } ) |
9 |
8
|
reseq2d |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) = ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝜒 } = { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
11 |
9 8 10
|
f1oeq123d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ↔ ( 𝐹 ↾ { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } ) : { 𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐷 } –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) ) |
12 |
5 11
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |