Metamath Proof Explorer


Theorem f1oresf1orab

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022)

Ref Expression
Hypotheses f1oresf1orab.1 𝐹 = ( 𝑥𝐴𝐶 )
f1oresf1orab.2 ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
f1oresf1orab.3 ( 𝜑𝐷𝐴 )
f1oresf1orab.4 ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → ( 𝜒𝑥𝐷 ) )
Assertion f1oresf1orab ( 𝜑 → ( 𝐹𝐷 ) : 𝐷1-1-onto→ { 𝑦𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 f1oresf1orab.1 𝐹 = ( 𝑥𝐴𝐶 )
2 f1oresf1orab.2 ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
3 f1oresf1orab.3 ( 𝜑𝐷𝐴 )
4 f1oresf1orab.4 ( ( 𝜑𝑥𝐴𝑦 = 𝐶 ) → ( 𝜒𝑥𝐷 ) )
5 1 2 4 f1oresrab ( 𝜑 → ( 𝐹 ↾ { 𝑥𝐴𝑥𝐷 } ) : { 𝑥𝐴𝑥𝐷 } –1-1-onto→ { 𝑦𝐵𝜒 } )
6 dfss7 ( 𝐷𝐴 ↔ { 𝑥𝐴𝑥𝐷 } = 𝐷 )
7 3 6 sylib ( 𝜑 → { 𝑥𝐴𝑥𝐷 } = 𝐷 )
8 7 eqcomd ( 𝜑𝐷 = { 𝑥𝐴𝑥𝐷 } )
9 8 reseq2d ( 𝜑 → ( 𝐹𝐷 ) = ( 𝐹 ↾ { 𝑥𝐴𝑥𝐷 } ) )
10 eqidd ( 𝜑 → { 𝑦𝐵𝜒 } = { 𝑦𝐵𝜒 } )
11 9 8 10 f1oeq123d ( 𝜑 → ( ( 𝐹𝐷 ) : 𝐷1-1-onto→ { 𝑦𝐵𝜒 } ↔ ( 𝐹 ↾ { 𝑥𝐴𝑥𝐷 } ) : { 𝑥𝐴𝑥𝐷 } –1-1-onto→ { 𝑦𝐵𝜒 } ) )
12 5 11 mpbird ( 𝜑 → ( 𝐹𝐷 ) : 𝐷1-1-onto→ { 𝑦𝐵𝜒 } )