Metamath Proof Explorer


Theorem f1oresf1orab

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022)

Ref Expression
Hypotheses f1oresf1orab.1 F = x A C
f1oresf1orab.2 φ F : A 1-1 onto B
f1oresf1orab.3 φ D A
f1oresf1orab.4 φ x A y = C χ x D
Assertion f1oresf1orab φ F D : D 1-1 onto y B | χ

Proof

Step Hyp Ref Expression
1 f1oresf1orab.1 F = x A C
2 f1oresf1orab.2 φ F : A 1-1 onto B
3 f1oresf1orab.3 φ D A
4 f1oresf1orab.4 φ x A y = C χ x D
5 1 2 4 f1oresrab φ F x A | x D : x A | x D 1-1 onto y B | χ
6 dfss7 D A x A | x D = D
7 3 6 sylib φ x A | x D = D
8 7 eqcomd φ D = x A | x D
9 8 reseq2d φ F D = F x A | x D
10 eqidd φ y B | χ = y B | χ
11 9 8 10 f1oeq123d φ F D : D 1-1 onto y B | χ F x A | x D : x A | x D 1-1 onto y B | χ
12 5 11 mpbird φ F D : D 1-1 onto y B | χ