Metamath Proof Explorer


Theorem f1oresf1orab

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022)

Ref Expression
Hypotheses f1oresf1orab.1 F=xAC
f1oresf1orab.2 φF:A1-1 ontoB
f1oresf1orab.3 φDA
f1oresf1orab.4 φxAy=CχxD
Assertion f1oresf1orab φFD:D1-1 ontoyB|χ

Proof

Step Hyp Ref Expression
1 f1oresf1orab.1 F=xAC
2 f1oresf1orab.2 φF:A1-1 ontoB
3 f1oresf1orab.3 φDA
4 f1oresf1orab.4 φxAy=CχxD
5 1 2 4 f1oresrab φFxA|xD:xA|xD1-1 ontoyB|χ
6 dfss7 DAxA|xD=D
7 3 6 sylib φxA|xD=D
8 7 eqcomd φD=xA|xD
9 8 reseq2d φFD=FxA|xD
10 eqidd φyB|χ=yB|χ
11 9 8 10 f1oeq123d φFD:D1-1 ontoyB|χFxA|xD:xA|xD1-1 ontoyB|χ
12 5 11 mpbird φFD:D1-1 ontoyB|χ