Metamath Proof Explorer


Theorem f1oresf1orab

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 1-Aug-2022)

Ref Expression
Hypotheses f1oresf1orab.1
|- F = ( x e. A |-> C )
f1oresf1orab.2
|- ( ph -> F : A -1-1-onto-> B )
f1oresf1orab.3
|- ( ph -> D C_ A )
f1oresf1orab.4
|- ( ( ph /\ x e. A /\ y = C ) -> ( ch <-> x e. D ) )
Assertion f1oresf1orab
|- ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } )

Proof

Step Hyp Ref Expression
1 f1oresf1orab.1
 |-  F = ( x e. A |-> C )
2 f1oresf1orab.2
 |-  ( ph -> F : A -1-1-onto-> B )
3 f1oresf1orab.3
 |-  ( ph -> D C_ A )
4 f1oresf1orab.4
 |-  ( ( ph /\ x e. A /\ y = C ) -> ( ch <-> x e. D ) )
5 1 2 4 f1oresrab
 |-  ( ph -> ( F |` { x e. A | x e. D } ) : { x e. A | x e. D } -1-1-onto-> { y e. B | ch } )
6 dfss7
 |-  ( D C_ A <-> { x e. A | x e. D } = D )
7 3 6 sylib
 |-  ( ph -> { x e. A | x e. D } = D )
8 7 eqcomd
 |-  ( ph -> D = { x e. A | x e. D } )
9 8 reseq2d
 |-  ( ph -> ( F |` D ) = ( F |` { x e. A | x e. D } ) )
10 eqidd
 |-  ( ph -> { y e. B | ch } = { y e. B | ch } )
11 9 8 10 f1oeq123d
 |-  ( ph -> ( ( F |` D ) : D -1-1-onto-> { y e. B | ch } <-> ( F |` { x e. A | x e. D } ) : { x e. A | x e. D } -1-1-onto-> { y e. B | ch } ) )
12 5 11 mpbird
 |-  ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } )