| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oresf1o.1 |  |-  ( ph -> F : A -1-1-onto-> B ) | 
						
							| 2 |  | f1oresf1o.2 |  |-  ( ph -> D C_ A ) | 
						
							| 3 |  | f1oresf1o.3 |  |-  ( ph -> ( E. x e. D ( F ` x ) = y <-> ( y e. B /\ ch ) ) ) | 
						
							| 4 |  | f1of1 |  |-  ( F : A -1-1-onto-> B -> F : A -1-1-> B ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> F : A -1-1-> B ) | 
						
							| 6 |  | f1ores |  |-  ( ( F : A -1-1-> B /\ D C_ A ) -> ( F |` D ) : D -1-1-onto-> ( F " D ) ) | 
						
							| 7 | 5 2 6 | syl2anc |  |-  ( ph -> ( F |` D ) : D -1-1-onto-> ( F " D ) ) | 
						
							| 8 |  | f1ofun |  |-  ( F : A -1-1-onto-> B -> Fun F ) | 
						
							| 9 | 1 8 | syl |  |-  ( ph -> Fun F ) | 
						
							| 10 |  | f1odm |  |-  ( F : A -1-1-onto-> B -> dom F = A ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> dom F = A ) | 
						
							| 12 | 2 11 | sseqtrrd |  |-  ( ph -> D C_ dom F ) | 
						
							| 13 |  | dfimafn |  |-  ( ( Fun F /\ D C_ dom F ) -> ( F " D ) = { y | E. x e. D ( F ` x ) = y } ) | 
						
							| 14 | 9 12 13 | syl2anc |  |-  ( ph -> ( F " D ) = { y | E. x e. D ( F ` x ) = y } ) | 
						
							| 15 | 3 | abbidv |  |-  ( ph -> { y | E. x e. D ( F ` x ) = y } = { y | ( y e. B /\ ch ) } ) | 
						
							| 16 |  | df-rab |  |-  { y e. B | ch } = { y | ( y e. B /\ ch ) } | 
						
							| 17 | 15 16 | eqtr4di |  |-  ( ph -> { y | E. x e. D ( F ` x ) = y } = { y e. B | ch } ) | 
						
							| 18 | 14 17 | eqtr2d |  |-  ( ph -> { y e. B | ch } = ( F " D ) ) | 
						
							| 19 | 18 | f1oeq3d |  |-  ( ph -> ( ( F |` D ) : D -1-1-onto-> { y e. B | ch } <-> ( F |` D ) : D -1-1-onto-> ( F " D ) ) ) | 
						
							| 20 | 7 19 | mpbird |  |-  ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } ) |