| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oresf1o.1 |
|- ( ph -> F : A -1-1-onto-> B ) |
| 2 |
|
f1oresf1o.2 |
|- ( ph -> D C_ A ) |
| 3 |
|
f1oresf1o.3 |
|- ( ph -> ( E. x e. D ( F ` x ) = y <-> ( y e. B /\ ch ) ) ) |
| 4 |
|
f1of1 |
|- ( F : A -1-1-onto-> B -> F : A -1-1-> B ) |
| 5 |
1 4
|
syl |
|- ( ph -> F : A -1-1-> B ) |
| 6 |
|
f1ores |
|- ( ( F : A -1-1-> B /\ D C_ A ) -> ( F |` D ) : D -1-1-onto-> ( F " D ) ) |
| 7 |
5 2 6
|
syl2anc |
|- ( ph -> ( F |` D ) : D -1-1-onto-> ( F " D ) ) |
| 8 |
|
f1ofun |
|- ( F : A -1-1-onto-> B -> Fun F ) |
| 9 |
1 8
|
syl |
|- ( ph -> Fun F ) |
| 10 |
|
f1odm |
|- ( F : A -1-1-onto-> B -> dom F = A ) |
| 11 |
1 10
|
syl |
|- ( ph -> dom F = A ) |
| 12 |
2 11
|
sseqtrrd |
|- ( ph -> D C_ dom F ) |
| 13 |
|
dfimafn |
|- ( ( Fun F /\ D C_ dom F ) -> ( F " D ) = { y | E. x e. D ( F ` x ) = y } ) |
| 14 |
9 12 13
|
syl2anc |
|- ( ph -> ( F " D ) = { y | E. x e. D ( F ` x ) = y } ) |
| 15 |
3
|
abbidv |
|- ( ph -> { y | E. x e. D ( F ` x ) = y } = { y | ( y e. B /\ ch ) } ) |
| 16 |
|
df-rab |
|- { y e. B | ch } = { y | ( y e. B /\ ch ) } |
| 17 |
15 16
|
eqtr4di |
|- ( ph -> { y | E. x e. D ( F ` x ) = y } = { y e. B | ch } ) |
| 18 |
14 17
|
eqtr2d |
|- ( ph -> { y e. B | ch } = ( F " D ) ) |
| 19 |
18
|
f1oeq3d |
|- ( ph -> ( ( F |` D ) : D -1-1-onto-> { y e. B | ch } <-> ( F |` D ) : D -1-1-onto-> ( F " D ) ) ) |
| 20 |
7 19
|
mpbird |
|- ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } ) |