Metamath Proof Explorer


Theorem f1oresf1o

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022)

Ref Expression
Hypotheses f1oresf1o.1
|- ( ph -> F : A -1-1-onto-> B )
f1oresf1o.2
|- ( ph -> D C_ A )
f1oresf1o.3
|- ( ph -> ( E. x e. D ( F ` x ) = y <-> ( y e. B /\ ch ) ) )
Assertion f1oresf1o
|- ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } )

Proof

Step Hyp Ref Expression
1 f1oresf1o.1
 |-  ( ph -> F : A -1-1-onto-> B )
2 f1oresf1o.2
 |-  ( ph -> D C_ A )
3 f1oresf1o.3
 |-  ( ph -> ( E. x e. D ( F ` x ) = y <-> ( y e. B /\ ch ) ) )
4 f1of1
 |-  ( F : A -1-1-onto-> B -> F : A -1-1-> B )
5 1 4 syl
 |-  ( ph -> F : A -1-1-> B )
6 f1ores
 |-  ( ( F : A -1-1-> B /\ D C_ A ) -> ( F |` D ) : D -1-1-onto-> ( F " D ) )
7 5 2 6 syl2anc
 |-  ( ph -> ( F |` D ) : D -1-1-onto-> ( F " D ) )
8 f1ofun
 |-  ( F : A -1-1-onto-> B -> Fun F )
9 1 8 syl
 |-  ( ph -> Fun F )
10 f1odm
 |-  ( F : A -1-1-onto-> B -> dom F = A )
11 1 10 syl
 |-  ( ph -> dom F = A )
12 2 11 sseqtrrd
 |-  ( ph -> D C_ dom F )
13 dfimafn
 |-  ( ( Fun F /\ D C_ dom F ) -> ( F " D ) = { y | E. x e. D ( F ` x ) = y } )
14 9 12 13 syl2anc
 |-  ( ph -> ( F " D ) = { y | E. x e. D ( F ` x ) = y } )
15 3 abbidv
 |-  ( ph -> { y | E. x e. D ( F ` x ) = y } = { y | ( y e. B /\ ch ) } )
16 df-rab
 |-  { y e. B | ch } = { y | ( y e. B /\ ch ) }
17 15 16 eqtr4di
 |-  ( ph -> { y | E. x e. D ( F ` x ) = y } = { y e. B | ch } )
18 14 17 eqtr2d
 |-  ( ph -> { y e. B | ch } = ( F " D ) )
19 18 f1oeq3d
 |-  ( ph -> ( ( F |` D ) : D -1-1-onto-> { y e. B | ch } <-> ( F |` D ) : D -1-1-onto-> ( F " D ) ) )
20 7 19 mpbird
 |-  ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } )