Metamath Proof Explorer


Theorem f1oresf1o

Description: Build a bijection by restricting the domain of a bijection. (Contributed by AV, 31-Jul-2022)

Ref Expression
Hypotheses f1oresf1o.1 ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
f1oresf1o.2 ( 𝜑𝐷𝐴 )
f1oresf1o.3 ( 𝜑 → ( ∃ 𝑥𝐷 ( 𝐹𝑥 ) = 𝑦 ↔ ( 𝑦𝐵𝜒 ) ) )
Assertion f1oresf1o ( 𝜑 → ( 𝐹𝐷 ) : 𝐷1-1-onto→ { 𝑦𝐵𝜒 } )

Proof

Step Hyp Ref Expression
1 f1oresf1o.1 ( 𝜑𝐹 : 𝐴1-1-onto𝐵 )
2 f1oresf1o.2 ( 𝜑𝐷𝐴 )
3 f1oresf1o.3 ( 𝜑 → ( ∃ 𝑥𝐷 ( 𝐹𝑥 ) = 𝑦 ↔ ( 𝑦𝐵𝜒 ) ) )
4 f1of1 ( 𝐹 : 𝐴1-1-onto𝐵𝐹 : 𝐴1-1𝐵 )
5 1 4 syl ( 𝜑𝐹 : 𝐴1-1𝐵 )
6 f1ores ( ( 𝐹 : 𝐴1-1𝐵𝐷𝐴 ) → ( 𝐹𝐷 ) : 𝐷1-1-onto→ ( 𝐹𝐷 ) )
7 5 2 6 syl2anc ( 𝜑 → ( 𝐹𝐷 ) : 𝐷1-1-onto→ ( 𝐹𝐷 ) )
8 f1ofun ( 𝐹 : 𝐴1-1-onto𝐵 → Fun 𝐹 )
9 1 8 syl ( 𝜑 → Fun 𝐹 )
10 f1odm ( 𝐹 : 𝐴1-1-onto𝐵 → dom 𝐹 = 𝐴 )
11 1 10 syl ( 𝜑 → dom 𝐹 = 𝐴 )
12 2 11 sseqtrrd ( 𝜑𝐷 ⊆ dom 𝐹 )
13 dfimafn ( ( Fun 𝐹𝐷 ⊆ dom 𝐹 ) → ( 𝐹𝐷 ) = { 𝑦 ∣ ∃ 𝑥𝐷 ( 𝐹𝑥 ) = 𝑦 } )
14 9 12 13 syl2anc ( 𝜑 → ( 𝐹𝐷 ) = { 𝑦 ∣ ∃ 𝑥𝐷 ( 𝐹𝑥 ) = 𝑦 } )
15 3 abbidv ( 𝜑 → { 𝑦 ∣ ∃ 𝑥𝐷 ( 𝐹𝑥 ) = 𝑦 } = { 𝑦 ∣ ( 𝑦𝐵𝜒 ) } )
16 df-rab { 𝑦𝐵𝜒 } = { 𝑦 ∣ ( 𝑦𝐵𝜒 ) }
17 15 16 eqtr4di ( 𝜑 → { 𝑦 ∣ ∃ 𝑥𝐷 ( 𝐹𝑥 ) = 𝑦 } = { 𝑦𝐵𝜒 } )
18 14 17 eqtr2d ( 𝜑 → { 𝑦𝐵𝜒 } = ( 𝐹𝐷 ) )
19 18 f1oeq3d ( 𝜑 → ( ( 𝐹𝐷 ) : 𝐷1-1-onto→ { 𝑦𝐵𝜒 } ↔ ( 𝐹𝐷 ) : 𝐷1-1-onto→ ( 𝐹𝐷 ) ) )
20 7 19 mpbird ( 𝜑 → ( 𝐹𝐷 ) : 𝐷1-1-onto→ { 𝑦𝐵𝜒 } )