| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oresf1o.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | f1oresf1o.2 | ⊢ ( 𝜑  →  𝐷  ⊆  𝐴 ) | 
						
							| 3 |  | f1oresf1o.3 | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦  ↔  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 4 |  | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1→ 𝐵 ) | 
						
							| 6 |  | f1ores | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵  ∧  𝐷  ⊆  𝐴 )  →  ( 𝐹  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( 𝐹  “  𝐷 ) ) | 
						
							| 7 | 5 2 6 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( 𝐹  “  𝐷 ) ) | 
						
							| 8 |  | f1ofun | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  Fun  𝐹 ) | 
						
							| 9 | 1 8 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 10 |  | f1odm | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  dom  𝐹  =  𝐴 ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  dom  𝐹  =  𝐴 ) | 
						
							| 12 | 2 11 | sseqtrrd | ⊢ ( 𝜑  →  𝐷  ⊆  dom  𝐹 ) | 
						
							| 13 |  | dfimafn | ⊢ ( ( Fun  𝐹  ∧  𝐷  ⊆  dom  𝐹 )  →  ( 𝐹  “  𝐷 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 } ) | 
						
							| 14 | 9 12 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  “  𝐷 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 } ) | 
						
							| 15 | 3 | abbidv | ⊢ ( 𝜑  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝜒 ) } ) | 
						
							| 16 |  | df-rab | ⊢ { 𝑦  ∈  𝐵  ∣  𝜒 }  =  { 𝑦  ∣  ( 𝑦  ∈  𝐵  ∧  𝜒 ) } | 
						
							| 17 | 15 16 | eqtr4di | ⊢ ( 𝜑  →  { 𝑦  ∣  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 }  =  { 𝑦  ∈  𝐵  ∣  𝜒 } ) | 
						
							| 18 | 14 17 | eqtr2d | ⊢ ( 𝜑  →  { 𝑦  ∈  𝐵  ∣  𝜒 }  =  ( 𝐹  “  𝐷 ) ) | 
						
							| 19 | 18 | f1oeq3d | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐷 ) : 𝐷 –1-1-onto→ { 𝑦  ∈  𝐵  ∣  𝜒 }  ↔  ( 𝐹  ↾  𝐷 ) : 𝐷 –1-1-onto→ ( 𝐹  “  𝐷 ) ) ) | 
						
							| 20 | 7 19 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐷 ) : 𝐷 –1-1-onto→ { 𝑦  ∈  𝐵  ∣  𝜒 } ) |