| Step |
Hyp |
Ref |
Expression |
| 1 |
|
f1oresf1o.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 2 |
|
f1oresf1o.2 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
| 3 |
|
f1oresf1o.3 |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
| 4 |
|
f1of1 |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 6 |
|
f1ores |
⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐷 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( 𝐹 “ 𝐷 ) ) |
| 7 |
5 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( 𝐹 “ 𝐷 ) ) |
| 8 |
|
f1ofun |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐹 ) |
| 9 |
1 8
|
syl |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 10 |
|
f1odm |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
| 11 |
1 10
|
syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 12 |
2 11
|
sseqtrrd |
⊢ ( 𝜑 → 𝐷 ⊆ dom 𝐹 ) |
| 13 |
|
dfimafn |
⊢ ( ( Fun 𝐹 ∧ 𝐷 ⊆ dom 𝐹 ) → ( 𝐹 “ 𝐷 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
| 14 |
9 12 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝐷 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 } ) |
| 15 |
3
|
abbidv |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) } ) |
| 16 |
|
df-rab |
⊢ { 𝑦 ∈ 𝐵 ∣ 𝜒 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) } |
| 17 |
15 16
|
eqtr4di |
⊢ ( 𝜑 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 } = { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |
| 18 |
14 17
|
eqtr2d |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝜒 } = ( 𝐹 “ 𝐷 ) ) |
| 19 |
18
|
f1oeq3d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ↔ ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ ( 𝐹 “ 𝐷 ) ) ) |
| 20 |
7 19
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |