| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oresf1o2.1 | ⊢ ( 𝜑  →  𝐹 : 𝐴 –1-1-onto→ 𝐵 ) | 
						
							| 2 |  | f1oresf1o2.2 | ⊢ ( 𝜑  →  𝐷  ⊆  𝐴 ) | 
						
							| 3 |  | f1oresf1o2.3 | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝑥  ∈  𝐷  ↔  𝜒 ) ) | 
						
							| 4 |  | f1of | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 7 | 2 | sselda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝐴 ) | 
						
							| 8 | 6 7 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 9 | 8 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 ) ) | 
						
							| 10 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 12 |  | eleq1 | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( ( 𝐹 ‘ 𝑥 )  ∈  𝐵  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 14 | 11 13 | mpbid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑦  ∈  𝐵 ) | 
						
							| 15 |  | eqcom | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑦  ↔  𝑦  =  ( 𝐹 ‘ 𝑥 ) ) | 
						
							| 16 | 3 | biimpd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝑥  ∈  𝐷  →  𝜒 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( 𝜑  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑥  ∈  𝐷  →  𝜒 ) ) ) | 
						
							| 18 | 15 17 | biimtrid | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( 𝑥  ∈  𝐷  →  𝜒 ) ) ) | 
						
							| 19 | 18 | com23 | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  𝜒 ) ) ) | 
						
							| 20 | 19 | 3imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝜒 ) | 
						
							| 21 | 14 20 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) | 
						
							| 22 | 21 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 23 |  | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 24 | 1 23 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐴 –onto→ 𝐵 ) | 
						
							| 25 |  | foelcdmi | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 26 | 24 25 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐵 )  →  ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 27 | 26 | ex | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 28 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 29 |  | nfv | ⊢ Ⅎ 𝑥 𝜒 | 
						
							| 30 |  | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 | 
						
							| 31 | 29 30 | nfim | ⊢ Ⅎ 𝑥 ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 32 |  | rspe | ⊢ ( ( 𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) | 
						
							| 33 | 32 | expcom | ⊢ ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( 𝑥  ∈  𝐷  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 34 | 33 | eqcoms | ⊢ ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝑥  ∈  𝐷  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝑥  ∈  𝐷  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 36 | 3 35 | sylbird | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝐹 ‘ 𝑥 ) )  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 37 | 36 | ex | ⊢ ( 𝜑  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝑦  =  ( 𝐹 ‘ 𝑥 )  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) ) | 
						
							| 39 | 15 38 | biimtrid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) ) | 
						
							| 40 | 39 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐴  →  ( ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) ) ) | 
						
							| 41 | 28 31 40 | rexlimd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  𝑦  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) ) | 
						
							| 42 | 27 41 | syld | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝐵  →  ( 𝜒  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) ) | 
						
							| 43 | 42 | impd | ⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝐵  ∧  𝜒 )  →  ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦 ) ) | 
						
							| 44 | 22 43 | impbid | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐷 ( 𝐹 ‘ 𝑥 )  =  𝑦  ↔  ( 𝑦  ∈  𝐵  ∧  𝜒 ) ) ) | 
						
							| 45 | 1 2 44 | f1oresf1o | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐷 ) : 𝐷 –1-1-onto→ { 𝑦  ∈  𝐵  ∣  𝜒 } ) |