Step |
Hyp |
Ref |
Expression |
1 |
|
f1oresf1o2.1 |
⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
f1oresf1o2.2 |
⊢ ( 𝜑 → 𝐷 ⊆ 𝐴 ) |
3 |
|
f1oresf1o2.3 |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐷 ↔ 𝜒 ) ) |
4 |
|
f1of |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
6 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
7 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ 𝐴 ) |
8 |
6 7
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
9 |
8
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) ) |
10 |
|
ffvelrn |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
12 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
14 |
11 13
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
15 |
|
eqcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) |
16 |
3
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐷 → 𝜒 ) ) |
17 |
16
|
ex |
⊢ ( 𝜑 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 ∈ 𝐷 → 𝜒 ) ) ) |
18 |
15 17
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝑥 ∈ 𝐷 → 𝜒 ) ) ) |
19 |
18
|
com23 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → 𝜒 ) ) ) |
20 |
19
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → 𝜒 ) |
21 |
14 20
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) |
22 |
21
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
23 |
|
f1ofo |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
24 |
1 23
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐴 –onto→ 𝐵 ) |
25 |
|
foelrni |
⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
26 |
24 25
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
27 |
26
|
ex |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
28 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
29 |
|
nfv |
⊢ Ⅎ 𝑥 𝜒 |
30 |
|
nfre1 |
⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 |
31 |
29 30
|
nfim |
⊢ Ⅎ 𝑥 ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
32 |
|
rspe |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑦 ) → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) |
33 |
32
|
expcom |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝑥 ∈ 𝐷 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
34 |
33
|
eqcoms |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝑥 ∈ 𝐷 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐷 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
36 |
3 35
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝐹 ‘ 𝑥 ) ) → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
37 |
36
|
ex |
⊢ ( 𝜑 → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
39 |
15 38
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
40 |
39
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) ) |
41 |
28 31 40
|
rexlimd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = 𝑦 → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
42 |
27 41
|
syld |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐵 → ( 𝜒 → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) ) |
43 |
42
|
impd |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) → ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ) ) |
44 |
22 43
|
impbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐷 ( 𝐹 ‘ 𝑥 ) = 𝑦 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜒 ) ) ) |
45 |
1 2 44
|
f1oresf1o |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝐷 ) : 𝐷 –1-1-onto→ { 𝑦 ∈ 𝐵 ∣ 𝜒 } ) |