| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1oresf1o2.1 |  |-  ( ph -> F : A -1-1-onto-> B ) | 
						
							| 2 |  | f1oresf1o2.2 |  |-  ( ph -> D C_ A ) | 
						
							| 3 |  | f1oresf1o2.3 |  |-  ( ( ph /\ y = ( F ` x ) ) -> ( x e. D <-> ch ) ) | 
						
							| 4 |  | f1of |  |-  ( F : A -1-1-onto-> B -> F : A --> B ) | 
						
							| 5 | 1 4 | syl |  |-  ( ph -> F : A --> B ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ph /\ x e. D ) -> F : A --> B ) | 
						
							| 7 | 2 | sselda |  |-  ( ( ph /\ x e. D ) -> x e. A ) | 
						
							| 8 | 6 7 | jca |  |-  ( ( ph /\ x e. D ) -> ( F : A --> B /\ x e. A ) ) | 
						
							| 9 | 8 | 3adant3 |  |-  ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( F : A --> B /\ x e. A ) ) | 
						
							| 10 |  | ffvelcdm |  |-  ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 11 | 9 10 | syl |  |-  ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( F ` x ) e. B ) | 
						
							| 12 |  | eleq1 |  |-  ( ( F ` x ) = y -> ( ( F ` x ) e. B <-> y e. B ) ) | 
						
							| 13 | 12 | 3ad2ant3 |  |-  ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( ( F ` x ) e. B <-> y e. B ) ) | 
						
							| 14 | 11 13 | mpbid |  |-  ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> y e. B ) | 
						
							| 15 |  | eqcom |  |-  ( ( F ` x ) = y <-> y = ( F ` x ) ) | 
						
							| 16 | 3 | biimpd |  |-  ( ( ph /\ y = ( F ` x ) ) -> ( x e. D -> ch ) ) | 
						
							| 17 | 16 | ex |  |-  ( ph -> ( y = ( F ` x ) -> ( x e. D -> ch ) ) ) | 
						
							| 18 | 15 17 | biimtrid |  |-  ( ph -> ( ( F ` x ) = y -> ( x e. D -> ch ) ) ) | 
						
							| 19 | 18 | com23 |  |-  ( ph -> ( x e. D -> ( ( F ` x ) = y -> ch ) ) ) | 
						
							| 20 | 19 | 3imp |  |-  ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ch ) | 
						
							| 21 | 14 20 | jca |  |-  ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( y e. B /\ ch ) ) | 
						
							| 22 | 21 | rexlimdv3a |  |-  ( ph -> ( E. x e. D ( F ` x ) = y -> ( y e. B /\ ch ) ) ) | 
						
							| 23 |  | f1ofo |  |-  ( F : A -1-1-onto-> B -> F : A -onto-> B ) | 
						
							| 24 | 1 23 | syl |  |-  ( ph -> F : A -onto-> B ) | 
						
							| 25 |  | foelcdmi |  |-  ( ( F : A -onto-> B /\ y e. B ) -> E. x e. A ( F ` x ) = y ) | 
						
							| 26 | 24 25 | sylan |  |-  ( ( ph /\ y e. B ) -> E. x e. A ( F ` x ) = y ) | 
						
							| 27 | 26 | ex |  |-  ( ph -> ( y e. B -> E. x e. A ( F ` x ) = y ) ) | 
						
							| 28 |  | nfv |  |-  F/ x ph | 
						
							| 29 |  | nfv |  |-  F/ x ch | 
						
							| 30 |  | nfre1 |  |-  F/ x E. x e. D ( F ` x ) = y | 
						
							| 31 | 29 30 | nfim |  |-  F/ x ( ch -> E. x e. D ( F ` x ) = y ) | 
						
							| 32 |  | rspe |  |-  ( ( x e. D /\ ( F ` x ) = y ) -> E. x e. D ( F ` x ) = y ) | 
						
							| 33 | 32 | expcom |  |-  ( ( F ` x ) = y -> ( x e. D -> E. x e. D ( F ` x ) = y ) ) | 
						
							| 34 | 33 | eqcoms |  |-  ( y = ( F ` x ) -> ( x e. D -> E. x e. D ( F ` x ) = y ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ y = ( F ` x ) ) -> ( x e. D -> E. x e. D ( F ` x ) = y ) ) | 
						
							| 36 | 3 35 | sylbird |  |-  ( ( ph /\ y = ( F ` x ) ) -> ( ch -> E. x e. D ( F ` x ) = y ) ) | 
						
							| 37 | 36 | ex |  |-  ( ph -> ( y = ( F ` x ) -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ x e. A ) -> ( y = ( F ` x ) -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) | 
						
							| 39 | 15 38 | biimtrid |  |-  ( ( ph /\ x e. A ) -> ( ( F ` x ) = y -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) | 
						
							| 40 | 39 | ex |  |-  ( ph -> ( x e. A -> ( ( F ` x ) = y -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) ) | 
						
							| 41 | 28 31 40 | rexlimd |  |-  ( ph -> ( E. x e. A ( F ` x ) = y -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) | 
						
							| 42 | 27 41 | syld |  |-  ( ph -> ( y e. B -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) | 
						
							| 43 | 42 | impd |  |-  ( ph -> ( ( y e. B /\ ch ) -> E. x e. D ( F ` x ) = y ) ) | 
						
							| 44 | 22 43 | impbid |  |-  ( ph -> ( E. x e. D ( F ` x ) = y <-> ( y e. B /\ ch ) ) ) | 
						
							| 45 | 1 2 44 | f1oresf1o |  |-  ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } ) |