Step |
Hyp |
Ref |
Expression |
1 |
|
f1oresf1o2.1 |
|- ( ph -> F : A -1-1-onto-> B ) |
2 |
|
f1oresf1o2.2 |
|- ( ph -> D C_ A ) |
3 |
|
f1oresf1o2.3 |
|- ( ( ph /\ y = ( F ` x ) ) -> ( x e. D <-> ch ) ) |
4 |
|
f1of |
|- ( F : A -1-1-onto-> B -> F : A --> B ) |
5 |
1 4
|
syl |
|- ( ph -> F : A --> B ) |
6 |
5
|
adantr |
|- ( ( ph /\ x e. D ) -> F : A --> B ) |
7 |
2
|
sselda |
|- ( ( ph /\ x e. D ) -> x e. A ) |
8 |
6 7
|
jca |
|- ( ( ph /\ x e. D ) -> ( F : A --> B /\ x e. A ) ) |
9 |
8
|
3adant3 |
|- ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( F : A --> B /\ x e. A ) ) |
10 |
|
ffvelrn |
|- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
11 |
9 10
|
syl |
|- ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( F ` x ) e. B ) |
12 |
|
eleq1 |
|- ( ( F ` x ) = y -> ( ( F ` x ) e. B <-> y e. B ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( ( F ` x ) e. B <-> y e. B ) ) |
14 |
11 13
|
mpbid |
|- ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> y e. B ) |
15 |
|
eqcom |
|- ( ( F ` x ) = y <-> y = ( F ` x ) ) |
16 |
3
|
biimpd |
|- ( ( ph /\ y = ( F ` x ) ) -> ( x e. D -> ch ) ) |
17 |
16
|
ex |
|- ( ph -> ( y = ( F ` x ) -> ( x e. D -> ch ) ) ) |
18 |
15 17
|
syl5bi |
|- ( ph -> ( ( F ` x ) = y -> ( x e. D -> ch ) ) ) |
19 |
18
|
com23 |
|- ( ph -> ( x e. D -> ( ( F ` x ) = y -> ch ) ) ) |
20 |
19
|
3imp |
|- ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ch ) |
21 |
14 20
|
jca |
|- ( ( ph /\ x e. D /\ ( F ` x ) = y ) -> ( y e. B /\ ch ) ) |
22 |
21
|
rexlimdv3a |
|- ( ph -> ( E. x e. D ( F ` x ) = y -> ( y e. B /\ ch ) ) ) |
23 |
|
f1ofo |
|- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
24 |
1 23
|
syl |
|- ( ph -> F : A -onto-> B ) |
25 |
|
foelrni |
|- ( ( F : A -onto-> B /\ y e. B ) -> E. x e. A ( F ` x ) = y ) |
26 |
24 25
|
sylan |
|- ( ( ph /\ y e. B ) -> E. x e. A ( F ` x ) = y ) |
27 |
26
|
ex |
|- ( ph -> ( y e. B -> E. x e. A ( F ` x ) = y ) ) |
28 |
|
nfv |
|- F/ x ph |
29 |
|
nfv |
|- F/ x ch |
30 |
|
nfre1 |
|- F/ x E. x e. D ( F ` x ) = y |
31 |
29 30
|
nfim |
|- F/ x ( ch -> E. x e. D ( F ` x ) = y ) |
32 |
|
rspe |
|- ( ( x e. D /\ ( F ` x ) = y ) -> E. x e. D ( F ` x ) = y ) |
33 |
32
|
expcom |
|- ( ( F ` x ) = y -> ( x e. D -> E. x e. D ( F ` x ) = y ) ) |
34 |
33
|
eqcoms |
|- ( y = ( F ` x ) -> ( x e. D -> E. x e. D ( F ` x ) = y ) ) |
35 |
34
|
adantl |
|- ( ( ph /\ y = ( F ` x ) ) -> ( x e. D -> E. x e. D ( F ` x ) = y ) ) |
36 |
3 35
|
sylbird |
|- ( ( ph /\ y = ( F ` x ) ) -> ( ch -> E. x e. D ( F ` x ) = y ) ) |
37 |
36
|
ex |
|- ( ph -> ( y = ( F ` x ) -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ x e. A ) -> ( y = ( F ` x ) -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) |
39 |
15 38
|
syl5bi |
|- ( ( ph /\ x e. A ) -> ( ( F ` x ) = y -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) |
40 |
39
|
ex |
|- ( ph -> ( x e. A -> ( ( F ` x ) = y -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) ) |
41 |
28 31 40
|
rexlimd |
|- ( ph -> ( E. x e. A ( F ` x ) = y -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) |
42 |
27 41
|
syld |
|- ( ph -> ( y e. B -> ( ch -> E. x e. D ( F ` x ) = y ) ) ) |
43 |
42
|
impd |
|- ( ph -> ( ( y e. B /\ ch ) -> E. x e. D ( F ` x ) = y ) ) |
44 |
22 43
|
impbid |
|- ( ph -> ( E. x e. D ( F ` x ) = y <-> ( y e. B /\ ch ) ) ) |
45 |
1 2 44
|
f1oresf1o |
|- ( ph -> ( F |` D ) : D -1-1-onto-> { y e. B | ch } ) |